Newer
Older
* Copyright 2023-2024 NXP
* Copyright (c) 2020 Toby Firth
*
* Based on adc_mcux_adc16.c and adc_mcux_adc12.c, which are:
* Copyright (c) 2017-2018, NXP
* Copyright (c) 2019 Vestas Wind Systems A/S
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_lpc_lpadc
#include <errno.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/sys/util.h>
#include <zephyr/drivers/regulator.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/pinctrl.h>
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include <fsl_lpadc.h>
LOG_MODULE_REGISTER(nxp_mcux_lpadc);
/*
* Currently, no instance of the ADC IP has more than
* 8 channels present. Therefore, we treat channels
* with an index 8 or higher as a side b channel, with
* the channel index given by channel_num % 8
*/
#define CHANNELS_PER_SIDE 0x8
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
struct mcux_lpadc_config {
ADC_Type *base;
lpadc_reference_voltage_source_t voltage_ref;
uint32_t offset_a;
uint32_t offset_b;
void (*irq_config_func)(const struct device *dev);
const struct pinctrl_dev_config *pincfg;
const struct device *ref_supplies;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
int32_t ref_supply_val;
};
struct mcux_lpadc_data {
const struct device *dev;
struct adc_context ctx;
uint16_t *buffer;
uint16_t *repeat_buffer;
uint32_t channels;
lpadc_conv_command_config_t cmd_config[CONFIG_LPADC_CHANNEL_COUNT];
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
static int mcux_lpadc_acquisition_time_setup(const struct device *dev, uint16_t acq_time,
lpadc_conv_command_config_t *cmd)
{
const struct mcux_lpadc_config *config = dev->config;
uint32_t adc_freq_hz = 0;
uint32_t conversion_factor = 0;
uint32_t acquisition_time_value = ADC_ACQ_TIME_VALUE(acq_time);
uint8_t acquisition_time_unit = ADC_ACQ_TIME_UNIT(acq_time);
if (ADC_ACQ_TIME_DEFAULT == acquisition_time_value) {
return 0;
}
/* If the acquisition time is expressed in ADC ticks, then directly compare
* the acquisition time with configuration items (3, 5, 7, etc. ADC ticks)
* supported by the LPADC. The conversion factor is set to 1 (means do not need
* to convert configuration items from ADC ticks to nanoseconds).
* If the acquisition time is expressed in microseconds or nanoseconds, First
* calculate the ADC cycle based on the ADC clock, then convert the configuration
* items supported by LPADC into nanoseconds, and finally compare the acquisition
* time with configuration items. The conversion factor is equal to the ADC cycle
* (means convert configuration items from ADC ticks to nanoseconds).
*/
if (ADC_ACQ_TIME_TICKS == acquisition_time_unit) {
conversion_factor = 1;
} else {
if (clock_control_get_rate(config->clock_dev, config->clock_subsys, &adc_freq_hz)) {
LOG_ERR("Get clock rate failed");
return -EINVAL;
}
conversion_factor = 1000000000 / adc_freq_hz;
if (ADC_ACQ_TIME_MICROSECONDS == acquisition_time_unit) {
acquisition_time_value *= 1000;
}
}
if ((3 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK3;
} else if ((5 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK5;
} else if ((7 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK7;
} else if ((11 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK11;
} else if ((19 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK19;
} else if ((35 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK35;
} else if ((67 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK67;
} else if ((131 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK131;
} else {
return -EINVAL;
}
return 0;
}
static int mcux_lpadc_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct mcux_lpadc_config *config = dev->config;
const struct device *regulator = config->ref_supplies;
int32_t vref_uv = config->ref_supply_val * 1000;
struct mcux_lpadc_data *data = dev->data;
lpadc_conv_command_config_t *cmd;
uint8_t channel_side;
uint8_t channel_num;
/* User may configure maximum number of active channels */
if (channel_cfg->channel_id >= CONFIG_LPADC_CHANNEL_COUNT) {
LOG_ERR("Channel %d is not valid", channel_cfg->channel_id);
return -EINVAL;
}
/* Select ADC CMD register to configure based off channel ID */
cmd = &data->cmd_config[channel_cfg->channel_id];
/* If bit 5 of input_positive is set, then channel side B is used */
channel_side = 0x20 & channel_cfg->input_positive;
/* Channel number is selected by lower 4 bits of input_positive */
channel_num = ADC_CMDL_ADCH(channel_cfg->input_positive);
LOG_DBG("Channel num: %u, channel side: %c", channel_num,
channel_side == 0 ? 'A' : 'B');
LPADC_GetDefaultConvCommandConfig(cmd);
/* Configure LPADC acquisition time. */
if (mcux_lpadc_acquisition_time_setup(dev, channel_cfg->acquisition_time, cmd)) {
LOG_ERR("LPADC acquisition time setting failed");
return -EINVAL;
}
if (channel_cfg->differential) {
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/* Channel pairs must match in differential mode */
if ((ADC_CMDL_ADCH(channel_cfg->input_positive)) !=
(ADC_CMDL_ADCH(channel_cfg->input_negative))) {
return -ENOTSUP;
}
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_DIFF) && FSL_FEATURE_LPADC_HAS_CMDL_DIFF
/* Check to see which channel is the positive input */
if (channel_cfg->input_positive & 0x20) {
/* Channel B is positive side */
cmd->sampleChannelMode =
kLPADC_SampleChannelDiffBothSideBA;
} else {
/* Channel A is positive side */
cmd->sampleChannelMode =
kLPADC_SampleChannelDiffBothSideAB;
}
#else
cmd->sampleChannelMode = kLPADC_SampleChannelDiffBothSide;
#endif
} else if (channel_side != 0) {
cmd->sampleChannelMode = kLPADC_SampleChannelSingleEndSideB;
} else {
/* Default value for sampleChannelMode is SideA */
}
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_CSCALE) && FSL_FEATURE_LPADC_HAS_CMDL_CSCALE
/*
* The true scaling factor used by the LPADC is 30/64, instead of
* 1/2. Select 1/2 as this is the closest scaling factor available
* in Zephyr.
*/
if (channel_cfg->gain == ADC_GAIN_1_2) {
LOG_INF("Channel gain of 30/64 selected");
cmd->sampleScaleMode = kLPADC_SamplePartScale;
} else if (channel_cfg->gain == ADC_GAIN_1) {
cmd->sampleScaleMode = kLPADC_SampleFullScale;
} else {
LOG_ERR("Invalid channel gain");
return -EINVAL;
}
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Invalid channel gain");
return -EINVAL;
}
/*
* ADC_REF_EXTERNAL1: Use SoC internal regulator as LPADC reference voltage.
* ADC_REF_EXTERNAL0: Use other voltage source (maybe also within the SoCs)
* as LPADC reference voltage, like VREFH, VDDA, etc.
*/
if (channel_cfg->reference == ADC_REF_EXTERNAL1) {
LOG_DBG("ref external1");
if (regulator != NULL) {
err = regulator_set_voltage(regulator, vref_uv, vref_uv);
if (err < 0) {
return err;
}
} else {
return -EINVAL;
}
} else if (channel_cfg->reference == ADC_REF_EXTERNAL0) {
LOG_DBG("ref external0");
} else {
LOG_DBG("ref not support");
return -EINVAL;
}
cmd->channelNumber = channel_num;
return 0;
}
static int mcux_lpadc_start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
const struct mcux_lpadc_config *config = dev->config;
struct mcux_lpadc_data *data = dev->data;
lpadc_hardware_average_mode_t hardware_average_mode;
uint8_t channel, last_enabled;
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_MODE) \
&& FSL_FEATURE_LPADC_HAS_CMDL_MODE
lpadc_conversion_resolution_mode_t resolution_mode;
switch (sequence->resolution) {
case 12:
case 13:
resolution_mode = kLPADC_ConversionResolutionStandard;
break;
case 16:
resolution_mode = kLPADC_ConversionResolutionHigh;
break;
default:
LOG_ERR("Unsupported resolution %d", sequence->resolution);
return -ENOTSUP;
}
#else
/* If FSL_FEATURE_LPADC_HAS_CMDL_MODE is not defined
only 12/13 bit resolution is supported. */
if (sequence->resolution != 12 && sequence->resolution != 13) {
LOG_ERR("Unsupported resolution %d", sequence->resolution);
return -ENOTSUP;
}
#endif /* FSL_FEATURE_LPADC_HAS_CMDL_MODE */
switch (sequence->oversampling) {
case 0:
hardware_average_mode = kLPADC_HardwareAverageCount1;
break;
case 1:
hardware_average_mode = kLPADC_HardwareAverageCount2;
break;
case 2:
hardware_average_mode = kLPADC_HardwareAverageCount4;
break;
case 3:
hardware_average_mode = kLPADC_HardwareAverageCount8;
break;
case 4:
hardware_average_mode = kLPADC_HardwareAverageCount16;
break;
case 5:
hardware_average_mode = kLPADC_HardwareAverageCount32;
break;
case 6:
hardware_average_mode = kLPADC_HardwareAverageCount64;
break;
case 7:
hardware_average_mode = kLPADC_HardwareAverageCount128;
break;
default:
LOG_ERR("Unsupported oversampling value %d",
sequence->oversampling);
return -ENOTSUP;
}
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*
* Now, look at the selected channels to determine which ADC channels
* we need to configure, and set those channels up.
*
* Since this ADC supports chaining channels in hardware, we will
* start with the highest channel ID and work downwards, chaining
* channels as we go.
*/
channel = CONFIG_LPADC_CHANNEL_COUNT;
last_enabled = 0;
while (channel-- > 0) {
if (sequence->channels & BIT(channel)) {
/* Setup this channel command */
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_MODE) && FSL_FEATURE_LPADC_HAS_CMDL_MODE
data->cmd_config[channel].conversionResolutionMode =
resolution_mode;
#endif
data->cmd_config[channel].hardwareAverageMode =
hardware_average_mode;
if (last_enabled) {
/* Chain channel */
data->cmd_config[channel].chainedNextCommandNumber =
last_enabled + 1;
LOG_DBG("Chaining channel %u to %u",
channel, last_enabled);
} else {
/* End of chain */
data->cmd_config[channel].chainedNextCommandNumber = 0;
}
LPADC_SetConvCommandConfig(config->base,
channel + 1, &data->cmd_config[channel]);
}
};
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
data->buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
int error = adc_context_wait_for_completion(&data->ctx);
return error;
}
static int mcux_lpadc_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct mcux_lpadc_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, async ? true : false, async);
error = mcux_lpadc_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
static int mcux_lpadc_read(const struct device *dev,
const struct adc_sequence *sequence)
{
return mcux_lpadc_read_async(dev, sequence, NULL);
}
static void mcux_lpadc_start_channel(const struct device *dev)
{
const struct mcux_lpadc_config *config = dev->config;
struct mcux_lpadc_data *data = dev->data;
lpadc_conv_trigger_config_t trigger_config;
uint8_t first_channel;
first_channel = find_lsb_set(data->channels) - 1;
LOG_DBG("Starting channel %d, input %d", first_channel,
data->cmd_config[first_channel].channelNumber);
LPADC_GetDefaultConvTriggerConfig(&trigger_config);
trigger_config.targetCommandId = first_channel + 1;
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/* configures trigger0. */
LPADC_SetConvTriggerConfig(config->base, 0, &trigger_config);
/* 1 is trigger0 mask. */
LPADC_DoSoftwareTrigger(config->base, 1);
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct mcux_lpadc_data *data =
CONTAINER_OF(ctx, struct mcux_lpadc_data, ctx);
data->channels = ctx->sequence.channels;
data->repeat_buffer = data->buffer;
mcux_lpadc_start_channel(data->dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct mcux_lpadc_data *data =
CONTAINER_OF(ctx, struct mcux_lpadc_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static void mcux_lpadc_isr(const struct device *dev)
{
const struct mcux_lpadc_config *config = dev->config;
struct mcux_lpadc_data *data = dev->data;
ADC_Type *base = config->base;
lpadc_conv_result_t conv_result;
lpadc_sample_channel_mode_t conv_mode;
int16_t result;
uint16_t channel;
#if (defined(FSL_FEATURE_LPADC_FIFO_COUNT) \
&& (FSL_FEATURE_LPADC_FIFO_COUNT == 2U))
LPADC_GetConvResult(base, &conv_result, 0U);
#else
LPADC_GetConvResult(base, &conv_result);
#endif /* FSL_FEATURE_LPADC_FIFO_COUNT */
channel = conv_result.commandIdSource - 1;
LOG_DBG("Finished channel %d. Raw result is 0x%04x",
channel, conv_result.convValue);
/*
* For 12 or 13 bit resolution the LSBs will be 0, so a bit shift
* is needed. For differential modes, the ADC conversion to
* millivolts expects to use a shift one less than the resolution.
*
* For 16 bit modes, the adc value can be left untouched. ADC
* API should treat the value as signed if the channel is
* in differential mode
*/
conv_mode = data->cmd_config[channel].sampleChannelMode;
if (data->ctx.sequence.resolution < 15) {
result = ((conv_result.convValue >> 3) & 0xFFF);
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_DIFF) && FSL_FEATURE_LPADC_HAS_CMDL_DIFF
if (conv_mode == kLPADC_SampleChannelDiffBothSideAB ||
conv_mode == kLPADC_SampleChannelDiffBothSideBA) {
#else
if (conv_mode == kLPADC_SampleChannelDiffBothSide) {
#endif
if ((conv_result.convValue & 0x8000)) {
/* 13 bit mode, MSB is sign bit. (2's complement) */
result -= 0x1000;
}
}
*data->buffer++ = result;
} else {
*data->buffer++ = conv_result.convValue;
}
data->channels &= ~BIT(channel);
/*
* Hardware will automatically continue sampling, so no need
* to issue new trigger
*/
if (data->channels == 0) {
adc_context_on_sampling_done(&data->ctx, dev);
}
}
static int mcux_lpadc_init(const struct device *dev)
{
const struct mcux_lpadc_config *config = dev->config;
struct mcux_lpadc_data *data = dev->data;
ADC_Type *base = config->base;
lpadc_config_t adc_config;
int err;
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
return err;
}
/* Enable necessary regulators */
const struct device *regulator = config->ref_supplies;
if (regulator != NULL) {
err = regulator_enable(regulator);
if (err) {
return err;
}
}
LPADC_GetDefaultConfig(&adc_config);
adc_config.enableAnalogPreliminary = true;
adc_config.referenceVoltageSource = config->voltage_ref;
#if defined(FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS) \
&& FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS
adc_config.conversionAverageMode = config->calibration_average;
#endif /* FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS */
#if !(DT_ANY_INST_HAS_PROP_STATUS_OKAY(no_power_level))
adc_config.powerLevelMode = config->power_level;
#endif
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
LPADC_Init(base, &adc_config);
/* Do ADC calibration. */
#if defined(FSL_FEATURE_LPADC_HAS_CTRL_CALOFS) \
&& FSL_FEATURE_LPADC_HAS_CTRL_CALOFS
#if defined(FSL_FEATURE_LPADC_HAS_OFSTRIM) \
&& FSL_FEATURE_LPADC_HAS_OFSTRIM
/* Request offset calibration. */
#if defined(CONFIG_LPADC_DO_OFFSET_CALIBRATION) \
&& CONFIG_LPADC_DO_OFFSET_CALIBRATION
LPADC_DoOffsetCalibration(base);
#else
LPADC_SetOffsetValue(base,
config->offset_a,
config->offset_b);
#endif /* DEMO_LPADC_DO_OFFSET_CALIBRATION */
#endif /* FSL_FEATURE_LPADC_HAS_OFSTRIM */
/* Request gain calibration. */
LPADC_DoAutoCalibration(base);
#endif /* FSL_FEATURE_LPADC_HAS_CTRL_CALOFS */
#if (defined(FSL_FEATURE_LPADC_HAS_CFG_CALOFS) \
&& FSL_FEATURE_LPADC_HAS_CFG_CALOFS)
/* Do auto calibration. */
LPADC_DoAutoCalibration(base);
#endif /* FSL_FEATURE_LPADC_HAS_CFG_CALOFS */
/* Enable the watermark interrupt. */
#if (defined(FSL_FEATURE_LPADC_FIFO_COUNT) \
&& (FSL_FEATURE_LPADC_FIFO_COUNT == 2U))
LPADC_EnableInterrupts(base, kLPADC_FIFO0WatermarkInterruptEnable);
#else
LPADC_EnableInterrupts(base, kLPADC_FIFOWatermarkInterruptEnable);
#endif /* FSL_FEATURE_LPADC_FIFO_COUNT */
config->irq_config_func(dev);
data->dev = dev;
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct adc_driver_api mcux_lpadc_driver_api = {
.channel_setup = mcux_lpadc_channel_setup,
.read = mcux_lpadc_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = mcux_lpadc_read_async,
#endif
};
#define LPADC_MCUX_INIT(n) \
static void mcux_lpadc_config_func_##n(const struct device *dev); \
\
static const struct mcux_lpadc_config mcux_lpadc_config_##n = { \
.base = (ADC_Type *)DT_INST_REG_ADDR(n), \
.voltage_ref = DT_INST_PROP(n, voltage_ref), \
.calibration_average = DT_INST_ENUM_IDX_OR(n, calibration_average, 0), \
.power_level = DT_INST_PROP_OR(n, power_level, 0), \
.offset_a = DT_INST_PROP(n, offset_value_a), \
.offset_b = DT_INST_PROP(n, offset_value_b), \
.irq_config_func = mcux_lpadc_config_func_##n, \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.ref_supplies = COND_CODE_1(DT_INST_NODE_HAS_PROP(n, nxp_references),\
(DEVICE_DT_GET(DT_PHANDLE(DT_DRV_INST(n),\
nxp_references))), (NULL)),\
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name),\
.ref_supply_val = COND_CODE_1(\
DT_INST_NODE_HAS_PROP(n, nxp_references),\
(DT_PHA(DT_DRV_INST(n), nxp_references, vref_mv)), \
(0)),\
}; \
static struct mcux_lpadc_data mcux_lpadc_data_##n = { \
ADC_CONTEXT_INIT_TIMER(mcux_lpadc_data_##n, ctx), \
ADC_CONTEXT_INIT_LOCK(mcux_lpadc_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(mcux_lpadc_data_##n, ctx), \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
&mcux_lpadc_init, NULL, &mcux_lpadc_data_##n, \
&mcux_lpadc_config_##n, POST_KERNEL, \
CONFIG_ADC_INIT_PRIORITY, \
&mcux_lpadc_driver_api); \
\
static void mcux_lpadc_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), mcux_lpadc_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
} \
\
BUILD_ASSERT((DT_INST_PROP_OR(n, power_level, 0) >= 0) && \
(DT_INST_PROP_OR(n, power_level, 0) <= 3), "power_level: wrong value");
DT_INST_FOREACH_STATUS_OKAY(LPADC_MCUX_INIT)