Newer
Older
realsize = size = zones_size[j];
if (zholes_size)
realsize -= zholes_size[j];
nr_kernel_pages += realsize;
nr_all_pages += realsize;
zone->spanned_pages = size;
zone->present_pages = realsize;
zone->name = zone_names[j];
spin_lock_init(&zone->lock);
spin_lock_init(&zone->lru_lock);
zone_seqlock_init(zone);
zone->zone_pgdat = pgdat;
zone->free_pages = 0;
zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
zone_pcp_init(zone);
INIT_LIST_HEAD(&zone->active_list);
INIT_LIST_HEAD(&zone->inactive_list);
zone->nr_scan_active = 0;
zone->nr_scan_inactive = 0;
zone->nr_active = 0;
zone->nr_inactive = 0;
atomic_set(&zone->reclaim_in_progress, 0);
zonetable_add(zone, nid, j, zone_start_pfn, size);
init_currently_empty_zone(zone, zone_start_pfn, size);
zone_start_pfn += size;
}
}
static void __init alloc_node_mem_map(struct pglist_data *pgdat)
{
/* Skip empty nodes */
if (!pgdat->node_spanned_pages)
return;
/* ia64 gets its own node_mem_map, before this, without bootmem */
if (!pgdat->node_mem_map) {
unsigned long size;
struct page *map;
size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
map = alloc_remap(pgdat->node_id, size);
if (!map)
map = alloc_bootmem_node(pgdat, size);
pgdat->node_mem_map = map;
/*
* With no DISCONTIG, the global mem_map is just set as node 0's
*/
if (pgdat == NODE_DATA(0))
mem_map = NODE_DATA(0)->node_mem_map;
#endif
}
void __init free_area_init_node(int nid, struct pglist_data *pgdat,
unsigned long *zones_size, unsigned long node_start_pfn,
unsigned long *zholes_size)
{
pgdat->node_id = nid;
pgdat->node_start_pfn = node_start_pfn;
calculate_zone_totalpages(pgdat, zones_size, zholes_size);
alloc_node_mem_map(pgdat);
free_area_init_core(pgdat, zones_size, zholes_size);
}
#ifndef CONFIG_NEED_MULTIPLE_NODES
static bootmem_data_t contig_bootmem_data;
struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
EXPORT_SYMBOL(contig_page_data);
void __init free_area_init(unsigned long *zones_size)
{
free_area_init_node(0, NODE_DATA(0), zones_size,
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}
#ifdef CONFIG_PROC_FS
#include <linux/seq_file.h>
static void *frag_start(struct seq_file *m, loff_t *pos)
{
pg_data_t *pgdat;
loff_t node = *pos;
for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
--node;
return pgdat;
}
static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
{
pg_data_t *pgdat = (pg_data_t *)arg;
(*pos)++;
return pgdat->pgdat_next;
}
static void frag_stop(struct seq_file *m, void *arg)
{
}
/*
* This walks the free areas for each zone.
*/
static int frag_show(struct seq_file *m, void *arg)
{
pg_data_t *pgdat = (pg_data_t *)arg;
struct zone *zone;
struct zone *node_zones = pgdat->node_zones;
unsigned long flags;
int order;
for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
continue;
spin_lock_irqsave(&zone->lock, flags);
seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
for (order = 0; order < MAX_ORDER; ++order)
seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
spin_unlock_irqrestore(&zone->lock, flags);
seq_putc(m, '\n');
}
return 0;
}
struct seq_operations fragmentation_op = {
.start = frag_start,
.next = frag_next,
.stop = frag_stop,
.show = frag_show,
};
/*
* Output information about zones in @pgdat.
*/
static int zoneinfo_show(struct seq_file *m, void *arg)
{
pg_data_t *pgdat = arg;
struct zone *zone;
struct zone *node_zones = pgdat->node_zones;
unsigned long flags;
for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
int i;
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
continue;
spin_lock_irqsave(&zone->lock, flags);
seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
seq_printf(m,
"\n pages free %lu"
"\n min %lu"
"\n low %lu"
"\n high %lu"
"\n active %lu"
"\n inactive %lu"
"\n scanned %lu (a: %lu i: %lu)"
"\n spanned %lu"
"\n present %lu",
zone->free_pages,
zone->pages_min,
zone->pages_low,
zone->pages_high,
zone->nr_active,
zone->nr_inactive,
zone->pages_scanned,
zone->nr_scan_active, zone->nr_scan_inactive,
zone->spanned_pages,
zone->present_pages);
seq_printf(m,
"\n protection: (%lu",
zone->lowmem_reserve[0]);
for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
seq_printf(m,
")"
"\n pagesets");
for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
struct per_cpu_pageset *pageset;
int j;
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
if (pageset->pcp[j].count)
break;
}
if (j == ARRAY_SIZE(pageset->pcp))
continue;
for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
seq_printf(m,
"\n cpu: %i pcp: %i"
"\n count: %i"
"\n high: %i"
"\n batch: %i",
i, j,
pageset->pcp[j].count,
pageset->pcp[j].high,
pageset->pcp[j].batch);
}
#ifdef CONFIG_NUMA
seq_printf(m,
"\n numa_hit: %lu"
"\n numa_miss: %lu"
"\n numa_foreign: %lu"
"\n interleave_hit: %lu"
"\n local_node: %lu"
"\n other_node: %lu",
pageset->numa_hit,
pageset->numa_miss,
pageset->numa_foreign,
pageset->interleave_hit,
pageset->local_node,
pageset->other_node);
#endif
}
seq_printf(m,
"\n all_unreclaimable: %u"
"\n prev_priority: %i"
"\n temp_priority: %i"
"\n start_pfn: %lu",
zone->all_unreclaimable,
zone->prev_priority,
zone->temp_priority,
zone->zone_start_pfn);
spin_unlock_irqrestore(&zone->lock, flags);
seq_putc(m, '\n');
}
return 0;
}
struct seq_operations zoneinfo_op = {
.start = frag_start, /* iterate over all zones. The same as in
* fragmentation. */
.next = frag_next,
.stop = frag_stop,
.show = zoneinfo_show,
};
static char *vmstat_text[] = {
"nr_dirty",
"nr_writeback",
"nr_unstable",
"nr_page_table_pages",
"nr_mapped",
"nr_slab",
"pgpgin",
"pgpgout",
"pswpin",
"pswpout",
"pgfree",
"pgactivate",
"pgdeactivate",
"pgfault",
"pgmajfault",
"pgrefill_dma",
"pgsteal_high",
"pgsteal_normal",
"slabs_scanned",
"kswapd_steal",
"kswapd_inodesteal",
"pageoutrun",
"allocstall",
"pgrotated",
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
};
static void *vmstat_start(struct seq_file *m, loff_t *pos)
{
struct page_state *ps;
if (*pos >= ARRAY_SIZE(vmstat_text))
return NULL;
ps = kmalloc(sizeof(*ps), GFP_KERNEL);
m->private = ps;
if (!ps)
return ERR_PTR(-ENOMEM);
get_full_page_state(ps);
ps->pgpgin /= 2; /* sectors -> kbytes */
ps->pgpgout /= 2;
return (unsigned long *)ps + *pos;
}
static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
{
(*pos)++;
if (*pos >= ARRAY_SIZE(vmstat_text))
return NULL;
return (unsigned long *)m->private + *pos;
}
static int vmstat_show(struct seq_file *m, void *arg)
{
unsigned long *l = arg;
unsigned long off = l - (unsigned long *)m->private;
seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
return 0;
}
static void vmstat_stop(struct seq_file *m, void *arg)
{
kfree(m->private);
m->private = NULL;
}
struct seq_operations vmstat_op = {
.start = vmstat_start,
.next = vmstat_next,
.stop = vmstat_stop,
.show = vmstat_show,
};
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_HOTPLUG_CPU
static int page_alloc_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
int cpu = (unsigned long)hcpu;
long *count;
unsigned long *src, *dest;
if (action == CPU_DEAD) {
int i;
/* Drain local pagecache count. */
count = &per_cpu(nr_pagecache_local, cpu);
atomic_add(*count, &nr_pagecache);
*count = 0;
local_irq_disable();
__drain_pages(cpu);
/* Add dead cpu's page_states to our own. */
dest = (unsigned long *)&__get_cpu_var(page_states);
src = (unsigned long *)&per_cpu(page_states, cpu);
for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
i++) {
dest[i] += src[i];
src[i] = 0;
}
local_irq_enable();
}
return NOTIFY_OK;
}
#endif /* CONFIG_HOTPLUG_CPU */
void __init page_alloc_init(void)
{
hotcpu_notifier(page_alloc_cpu_notify, 0);
}
/*
* setup_per_zone_lowmem_reserve - called whenever
* sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
* has a correct pages reserved value, so an adequate number of
* pages are left in the zone after a successful __alloc_pages().
*/
static void setup_per_zone_lowmem_reserve(void)
{
struct pglist_data *pgdat;
int j, idx;
for_each_pgdat(pgdat) {
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = pgdat->node_zones + j;
unsigned long present_pages = zone->present_pages;
zone->lowmem_reserve[j] = 0;
for (idx = j-1; idx >= 0; idx--) {
struct zone *lower_zone;
if (sysctl_lowmem_reserve_ratio[idx] < 1)
sysctl_lowmem_reserve_ratio[idx] = 1;
lower_zone = pgdat->node_zones + idx;
lower_zone->lowmem_reserve[j] = present_pages /
sysctl_lowmem_reserve_ratio[idx];
present_pages += lower_zone->present_pages;
}
}
}
}
/*
* setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
* that the pages_{min,low,high} values for each zone are set correctly
* with respect to min_free_kbytes.
*/
void setup_per_zone_pages_min(void)
{
unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
unsigned long lowmem_pages = 0;
struct zone *zone;
unsigned long flags;
/* Calculate total number of !ZONE_HIGHMEM pages */
for_each_zone(zone) {
if (!is_highmem(zone))
lowmem_pages += zone->present_pages;
}
for_each_zone(zone) {
tmp = (pages_min * zone->present_pages) / lowmem_pages;
* __GFP_HIGH and PF_MEMALLOC allocations usually don't
* need highmem pages, so cap pages_min to a small
* value here.
*
* The (pages_high-pages_low) and (pages_low-pages_min)
* deltas controls asynch page reclaim, and so should
* not be capped for highmem.
*/
int min_pages;
min_pages = zone->present_pages / 1024;
if (min_pages < SWAP_CLUSTER_MAX)
min_pages = SWAP_CLUSTER_MAX;
if (min_pages > 128)
min_pages = 128;
zone->pages_min = min_pages;
} else {
/*
* If it's a lowmem zone, reserve a number of pages
zone->pages_low = zone->pages_min + tmp / 4;
zone->pages_high = zone->pages_min + tmp / 2;
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
spin_unlock_irqrestore(&zone->lru_lock, flags);
}
}
/*
* Initialise min_free_kbytes.
*
* For small machines we want it small (128k min). For large machines
* we want it large (64MB max). But it is not linear, because network
* bandwidth does not increase linearly with machine size. We use
*
* min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
* min_free_kbytes = sqrt(lowmem_kbytes * 16)
*
* which yields
*
* 16MB: 512k
* 32MB: 724k
* 64MB: 1024k
* 128MB: 1448k
* 256MB: 2048k
* 512MB: 2896k
* 1024MB: 4096k
* 2048MB: 5792k
* 4096MB: 8192k
* 8192MB: 11584k
* 16384MB: 16384k
*/
static int __init init_per_zone_pages_min(void)
{
unsigned long lowmem_kbytes;
lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
if (min_free_kbytes < 128)
min_free_kbytes = 128;
if (min_free_kbytes > 65536)
min_free_kbytes = 65536;
setup_per_zone_pages_min();
setup_per_zone_lowmem_reserve();
return 0;
}
module_init(init_per_zone_pages_min)
/*
* min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
* that we can call two helper functions whenever min_free_kbytes
* changes.
*/
int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec(table, write, file, buffer, length, ppos);
setup_per_zone_pages_min();
return 0;
}
/*
* lowmem_reserve_ratio_sysctl_handler - just a wrapper around
* proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
* whenever sysctl_lowmem_reserve_ratio changes.
*
* The reserve ratio obviously has absolutely no relation with the
* pages_min watermarks. The lowmem reserve ratio can only make sense
* if in function of the boot time zone sizes.
*/
int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec_minmax(table, write, file, buffer, length, ppos);
setup_per_zone_lowmem_reserve();
return 0;
}
__initdata int hashdist = HASHDIST_DEFAULT;
#ifdef CONFIG_NUMA
static int __init set_hashdist(char *str)
{
if (!str)
return 0;
hashdist = simple_strtoul(str, &str, 0);
return 1;
}
__setup("hashdist=", set_hashdist);
#endif
/*
* allocate a large system hash table from bootmem
* - it is assumed that the hash table must contain an exact power-of-2
* quantity of entries
* - limit is the number of hash buckets, not the total allocation size
*/
void *__init alloc_large_system_hash(const char *tablename,
unsigned long bucketsize,
unsigned long numentries,
int scale,
int flags,
unsigned int *_hash_shift,
unsigned int *_hash_mask,
unsigned long limit)
{
unsigned long long max = limit;
unsigned long log2qty, size;
void *table = NULL;
/* allow the kernel cmdline to have a say */
if (!numentries) {
/* round applicable memory size up to nearest megabyte */
numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
numentries >>= 20 - PAGE_SHIFT;
numentries <<= 20 - PAGE_SHIFT;
/* limit to 1 bucket per 2^scale bytes of low memory */
if (scale > PAGE_SHIFT)
numentries >>= (scale - PAGE_SHIFT);
else
numentries <<= (PAGE_SHIFT - scale);
}
/* rounded up to nearest power of 2 in size */
numentries = 1UL << (long_log2(numentries) + 1);
/* limit allocation size to 1/16 total memory by default */
if (max == 0) {
max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
do_div(max, bucketsize);
}
if (numentries > max)
numentries = max;
log2qty = long_log2(numentries);
do {
size = bucketsize << log2qty;
if (flags & HASH_EARLY)
table = alloc_bootmem(size);
else if (hashdist)
table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
else {
unsigned long order;
for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
;
table = (void*) __get_free_pages(GFP_ATOMIC, order);
}
} while (!table && size > PAGE_SIZE && --log2qty);
if (!table)
panic("Failed to allocate %s hash table\n", tablename);
printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
tablename,
(1U << log2qty),
long_log2(size) - PAGE_SHIFT,
size);
if (_hash_shift)
*_hash_shift = log2qty;
if (_hash_mask)
*_hash_mask = (1 << log2qty) - 1;
return table;
}