Newer
Older
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/mm/page_alloc.c
*
* Manages the free list, the system allocates free pages here.
* Note that kmalloc() lives in slab.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
* Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
* Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
* Zone balancing, Kanoj Sarcar, SGI, Jan 2000
* Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
* (lots of bits borrowed from Ingo Molnar & Andrew Morton)
*/
#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/kernel.h>
#include <linux/kasan.h>
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/memory_hotplug.h>
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
#include <linux/vmstat.h>
#include <linux/mempolicy.h>
#include <linux/memremap.h>
Yasunori Goto
committed
#include <linux/stop_machine.h>
#include <linux/sort.h>
#include <linux/pfn.h>
#include <linux/backing-dev.h>
#include <linux/fault-inject.h>
#include <linux/debugobjects.h>
#include <linux/kmemleak.h>
#include <linux/compaction.h>
Mel Gorman
committed
#include <trace/events/kmem.h>
#include <linux/migrate.h>
#include <linux/sched/rt.h>
Ingo Molnar
committed
#include <linux/sched/mm.h>
#include <linux/kthread.h>
#include <linux/memcontrol.h>
Steven Rostedt (VMware)
committed
#include <linux/ftrace.h>
#include <linux/lockdep.h>
#include <linux/psi.h>
#include <asm/sections.h>
#include "shuffle.h"
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
#define MIN_PERCPU_PAGELIST_FRACTION (8)
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
* N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
* It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
* Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
* defined in <linux/topology.h>.
*/
DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
#endif
/* work_structs for global per-cpu drains */
struct pcpu_drain {
struct zone *zone;
struct work_struct work;
};
static DEFINE_MUTEX(pcpu_drain_mutex);
static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
volatile unsigned long latent_entropy __latent_entropy;
EXPORT_SYMBOL(latent_entropy);
#endif
* Array of node states.
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
[N_POSSIBLE] = NODE_MASK_ALL,
[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
[N_HIGH_MEMORY] = { { [0] = 1UL } },
#endif
[N_MEMORY] = { { [0] = 1UL } },
[N_CPU] = { { [0] = 1UL } },
#endif /* NUMA */
};
EXPORT_SYMBOL(node_states);
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
unsigned long totalreserve_pages __read_mostly;
unsigned long totalcma_pages __read_mostly;
int percpu_pagelist_fraction;
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
Alexander Potapenko
committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_alloc);
#else
DEFINE_STATIC_KEY_FALSE(init_on_alloc);
#endif
EXPORT_SYMBOL(init_on_alloc);
#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
DEFINE_STATIC_KEY_TRUE(init_on_free);
#else
DEFINE_STATIC_KEY_FALSE(init_on_free);
#endif
EXPORT_SYMBOL(init_on_free);
static int __init early_init_on_alloc(char *buf)
{
int ret;
bool bool_result;
if (!buf)
return -EINVAL;
ret = kstrtobool(buf, &bool_result);
if (bool_result && page_poisoning_enabled())
pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
if (bool_result)
static_branch_enable(&init_on_alloc);
else
static_branch_disable(&init_on_alloc);
return ret;
}
early_param("init_on_alloc", early_init_on_alloc);
static int __init early_init_on_free(char *buf)
{
int ret;
bool bool_result;
if (!buf)
return -EINVAL;
ret = kstrtobool(buf, &bool_result);
if (bool_result && page_poisoning_enabled())
pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
if (bool_result)
static_branch_enable(&init_on_free);
else
static_branch_disable(&init_on_free);
return ret;
}
early_param("init_on_free", early_init_on_free);
/*
* A cached value of the page's pageblock's migratetype, used when the page is
* put on a pcplist. Used to avoid the pageblock migratetype lookup when
* freeing from pcplists in most cases, at the cost of possibly becoming stale.
* Also the migratetype set in the page does not necessarily match the pcplist
* index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
* other index - this ensures that it will be put on the correct CMA freelist.
*/
static inline int get_pcppage_migratetype(struct page *page)
{
return page->index;
}
static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
page->index = migratetype;
}
#ifdef CONFIG_PM_SLEEP
/*
* The following functions are used by the suspend/hibernate code to temporarily
* change gfp_allowed_mask in order to avoid using I/O during memory allocations
* while devices are suspended. To avoid races with the suspend/hibernate code,
* they should always be called with system_transition_mutex held
* (gfp_allowed_mask also should only be modified with system_transition_mutex
* held, unless the suspend/hibernate code is guaranteed not to run in parallel
* with that modification).
static gfp_t saved_gfp_mask;
void pm_restore_gfp_mask(void)
WARN_ON(!mutex_is_locked(&system_transition_mutex));
if (saved_gfp_mask) {
gfp_allowed_mask = saved_gfp_mask;
saved_gfp_mask = 0;
}
void pm_restrict_gfp_mask(void)
WARN_ON(!mutex_is_locked(&system_transition_mutex));
WARN_ON(saved_gfp_mask);
saved_gfp_mask = gfp_allowed_mask;
Mel Gorman
committed
gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
bool pm_suspended_storage(void)
{
Mel Gorman
committed
if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
return false;
return true;
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
unsigned int pageblock_order __read_mostly;
static void __free_pages_ok(struct page *page, unsigned int order);
/*
* results with 256, 32 in the lowmem_reserve sysctl:
* 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
* 1G machine -> (16M dma, 784M normal, 224M high)
* NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
* HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
* HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
*
* TBD: should special case ZONE_DMA32 machines here - in those we normally
* don't need any ZONE_NORMAL reservation
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
#ifdef CONFIG_ZONE_DMA
[ZONE_DMA] = 256,
#ifdef CONFIG_ZONE_DMA32
[ZONE_DMA32] = 256,
[ZONE_NORMAL] = 32,
#ifdef CONFIG_HIGHMEM
[ZONE_HIGHMEM] = 0,
[ZONE_MOVABLE] = 0,
Christoph Lameter
committed
};
static char * const zone_names[MAX_NR_ZONES] = {
#ifdef CONFIG_ZONE_DMA
Christoph Lameter
committed
"DMA",
#ifdef CONFIG_ZONE_DMA32
Christoph Lameter
committed
"DMA32",
Christoph Lameter
committed
"Normal",
#ifdef CONFIG_HIGHMEM
#ifdef CONFIG_ZONE_DEVICE
"Device",
#endif
Christoph Lameter
committed
};
const char * const migratetype_names[MIGRATE_TYPES] = {
"Unmovable",
"Movable",
"Reclaimable",
"HighAtomic",
#ifdef CONFIG_CMA
"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
"Isolate",
#endif
};
compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
[NULL_COMPOUND_DTOR] = NULL,
[COMPOUND_PAGE_DTOR] = free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
[HUGETLB_PAGE_DTOR] = free_huge_page,
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
};
int user_min_free_kbytes = -1;
Mel Gorman
committed
#ifdef CONFIG_DISCONTIGMEM
/*
* DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
* are not on separate NUMA nodes. Functionally this works but with
* watermark_boost_factor, it can reclaim prematurely as the ranges can be
* quite small. By default, do not boost watermarks on discontigmem as in
* many cases very high-order allocations like THP are likely to be
* unsupported and the premature reclaim offsets the advantage of long-term
* fragmentation avoidance.
*/
int watermark_boost_factor __read_mostly;
#else
Mel Gorman
committed
int watermark_boost_factor __read_mostly = 15000;
Mel Gorman
committed
#endif
int watermark_scale_factor = 10;
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long required_kernelcore __initdata;
static unsigned long required_kernelcore_percent __initdata;
static unsigned long required_movablecore __initdata;
static unsigned long required_movablecore_percent __initdata;
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
static bool mirrored_kernelcore __meminitdata;
/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
unsigned int nr_online_nodes __read_mostly = 1;
Christoph Lameter
committed
EXPORT_SYMBOL(nr_online_nodes);
int page_group_by_mobility_disabled __read_mostly;
Mel Gorman
committed
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/*
* During boot we initialize deferred pages on-demand, as needed, but once
* page_alloc_init_late() has finished, the deferred pages are all initialized,
* and we can permanently disable that path.
*/
static DEFINE_STATIC_KEY_TRUE(deferred_pages);
/*
* Calling kasan_free_pages() only after deferred memory initialization
* has completed. Poisoning pages during deferred memory init will greatly
* lengthen the process and cause problem in large memory systems as the
* deferred pages initialization is done with interrupt disabled.
*
* Assuming that there will be no reference to those newly initialized
* pages before they are ever allocated, this should have no effect on
* KASAN memory tracking as the poison will be properly inserted at page
* allocation time. The only corner case is when pages are allocated by
* on-demand allocation and then freed again before the deferred pages
* initialization is done, but this is not likely to happen.
*/
static inline void kasan_free_nondeferred_pages(struct page *page, int order)
{
if (!static_branch_unlikely(&deferred_pages))
kasan_free_pages(page, order);
}
Mel Gorman
committed
/* Returns true if the struct page for the pfn is uninitialised */
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
Mel Gorman
committed
{
Mel Gorman
committed
int nid = early_pfn_to_nid(pfn);
if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
Mel Gorman
committed
return true;
return false;
}
/*
* Returns true when the remaining initialisation should be deferred until
Mel Gorman
committed
* later in the boot cycle when it can be parallelised.
*/
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
Mel Gorman
committed
{
static unsigned long prev_end_pfn, nr_initialised;
/*
* prev_end_pfn static that contains the end of previous zone
* No need to protect because called very early in boot before smp_init.
*/
if (prev_end_pfn != end_pfn) {
prev_end_pfn = end_pfn;
nr_initialised = 0;
}
/* Always populate low zones for address-constrained allocations */
if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
Mel Gorman
committed
return false;
/*
* We start only with one section of pages, more pages are added as
* needed until the rest of deferred pages are initialized.
*/
nr_initialised++;
if ((nr_initialised > PAGES_PER_SECTION) &&
(pfn & (PAGES_PER_SECTION - 1)) == 0) {
NODE_DATA(nid)->first_deferred_pfn = pfn;
return true;
Mel Gorman
committed
}
return false;
Mel Gorman
committed
}
#else
#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
Mel Gorman
committed
static inline bool early_page_uninitialised(unsigned long pfn)
{
return false;
}
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
Mel Gorman
committed
{
return false;
Mel Gorman
committed
}
#endif
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
return section_to_usemap(__pfn_to_section(pfn));
#else
return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}
static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
pfn &= (PAGES_PER_SECTION-1);
#else
pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
#endif /* CONFIG_SPARSEMEM */
return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
}
/**
* get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
* @page: The page within the block of interest
* @pfn: The target page frame number
* @end_bitidx: The last bit of interest to retrieve
* @mask: mask of bits that the caller is interested in
*
* Return: pageblock_bits flags
*/
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
unsigned long pfn,
unsigned long end_bitidx,
unsigned long mask)
{
unsigned long *bitmap;
unsigned long bitidx, word_bitidx;
unsigned long word;
bitmap = get_pageblock_bitmap(page, pfn);
bitidx = pfn_to_bitidx(page, pfn);
word_bitidx = bitidx / BITS_PER_LONG;
bitidx &= (BITS_PER_LONG-1);
word = bitmap[word_bitidx];
bitidx += end_bitidx;
return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}
unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
unsigned long end_bitidx,
unsigned long mask)
{
return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}
static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}
/**
* set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
* @page: The page within the block of interest
* @flags: The flags to set
* @pfn: The target page frame number
* @end_bitidx: The last bit of interest
* @mask: mask of bits that the caller is interested in
*/
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
unsigned long pfn,
unsigned long end_bitidx,
unsigned long mask)
{
unsigned long *bitmap;
unsigned long bitidx, word_bitidx;
unsigned long old_word, word;
BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
bitmap = get_pageblock_bitmap(page, pfn);
bitidx = pfn_to_bitidx(page, pfn);
word_bitidx = bitidx / BITS_PER_LONG;
bitidx &= (BITS_PER_LONG-1);
VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
bitidx += end_bitidx;
mask <<= (BITS_PER_LONG - bitidx - 1);
flags <<= (BITS_PER_LONG - bitidx - 1);
word = READ_ONCE(bitmap[word_bitidx]);
for (;;) {
old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
if (word == old_word)
break;
word = old_word;
}
}
Mel Gorman
committed
void set_pageblock_migratetype(struct page *page, int migratetype)
if (unlikely(page_group_by_mobility_disabled &&
migratetype < MIGRATE_PCPTYPES))
migratetype = MIGRATE_UNMOVABLE;
set_pageblock_flags_group(page, (unsigned long)migratetype,
PB_migrate, PB_migrate_end);
}
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
int ret = 0;
unsigned seq;
unsigned long pfn = page_to_pfn(page);
Cody P Schafer
committed
unsigned long sp, start_pfn;
do {
seq = zone_span_seqbegin(zone);
Cody P Schafer
committed
start_pfn = zone->zone_start_pfn;
sp = zone->spanned_pages;
if (!zone_spans_pfn(zone, pfn))
ret = 1;
} while (zone_span_seqretry(zone, seq));
Cody P Schafer
committed
if (ret)
pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
pfn, zone_to_nid(zone), zone->name,
start_pfn, start_pfn + sp);
Cody P Schafer
committed
}
static int page_is_consistent(struct zone *zone, struct page *page)
{
if (!pfn_valid_within(page_to_pfn(page)))
return 0;
return 1;
}
/*
* Temporary debugging check for pages not lying within a given zone.
*/
Matthias Kaehlcke
committed
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
{
if (page_outside_zone_boundaries(zone, page))
if (!page_is_consistent(zone, page))
return 1;
Matthias Kaehlcke
committed
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
static void bad_page(struct page *page, const char *reason)
static unsigned long resume;
static unsigned long nr_shown;
static unsigned long nr_unshown;
/*
* Allow a burst of 60 reports, then keep quiet for that minute;
* or allow a steady drip of one report per second.
*/
if (nr_shown == 60) {
if (time_before(jiffies, resume)) {
nr_unshown++;
goto out;
}
if (nr_unshown) {
"BUG: Bad page state: %lu messages suppressed\n",
nr_unshown);
nr_unshown = 0;
}
nr_shown = 0;
}
if (nr_shown++ == 0)
resume = jiffies + 60 * HZ;
pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
current->comm, page_to_pfn(page));
__dump_page(page, reason);
dump_page_owner(page);
print_modules();
/* Leave bad fields for debug, except PageBuddy could make trouble */
page_mapcount_reset(page); /* remove PageBuddy */
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}
/*
* Higher-order pages are called "compound pages". They are structured thusly:
*
* The first PAGE_SIZE page is called the "head page" and have PG_head set.
* The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
* in bit 0 of page->compound_head. The rest of bits is pointer to head page.
* The first tail page's ->compound_dtor holds the offset in array of compound
* page destructors. See compound_page_dtors.
* The first tail page's ->compound_order holds the order of allocation.
* This usage means that zero-order pages may not be compound.
void free_compound_page(struct page *page)
mem_cgroup_uncharge(page);
__free_pages_ok(page, compound_order(page));
void prep_compound_page(struct page *page, unsigned int order)
{
int i;
int nr_pages = 1 << order;
set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
set_compound_order(page, order);
__SetPageHead(page);
for (i = 1; i < nr_pages; i++) {
struct page *p = page + i;
p->mapping = TAIL_MAPPING;
atomic_set(compound_mapcount_ptr(page), -1);
if (hpage_pincount_available(page))
atomic_set(compound_pincount_ptr(page), 0);
}
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
bool _debug_pagealloc_enabled_early __read_mostly
= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
EXPORT_SYMBOL(_debug_pagealloc_enabled);
DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
static int __init early_debug_pagealloc(char *buf)
{
return kstrtobool(buf, &_debug_pagealloc_enabled_early);
}
early_param("debug_pagealloc", early_debug_pagealloc);
void init_debug_pagealloc(void)
if (!debug_pagealloc_enabled())
return;
static_branch_enable(&_debug_pagealloc_enabled);
if (!debug_guardpage_minorder())
return;
static_branch_enable(&_debug_guardpage_enabled);
static int __init debug_guardpage_minorder_setup(char *buf)
{
unsigned long res;
if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
pr_err("Bad debug_guardpage_minorder value\n");
return 0;
}
_debug_guardpage_minorder = res;
pr_info("Setting debug_guardpage_minorder to %lu\n", res);
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
static inline bool set_page_guard(struct zone *zone, struct page *page,
unsigned int order, int migratetype)
if (!debug_guardpage_enabled())
return false;
if (order >= debug_guardpage_minorder())
return false;
__SetPageGuard(page);
INIT_LIST_HEAD(&page->lru);
set_page_private(page, order);
/* Guard pages are not available for any usage */
__mod_zone_freepage_state(zone, -(1 << order), migratetype);
static inline void clear_page_guard(struct zone *zone, struct page *page,
unsigned int order, int migratetype)
if (!debug_guardpage_enabled())
return;
__ClearPageGuard(page);
set_page_private(page, 0);
if (!is_migrate_isolate(migratetype))
__mod_zone_freepage_state(zone, (1 << order), migratetype);
static inline bool set_page_guard(struct zone *zone, struct page *page,
unsigned int order, int migratetype) { return false; }
static inline void clear_page_guard(struct zone *zone, struct page *page,
unsigned int order, int migratetype) {}
static inline void set_page_order(struct page *page, unsigned int order)
__SetPageBuddy(page);
}
/*
* This function checks whether a page is free && is the buddy
* we can coalesce a page and its buddy if
* (a) the buddy is not in a hole (check before calling!) &&
* (b) the buddy is in the buddy system &&
* (c) a page and its buddy have the same order &&
* (d) a page and its buddy are in the same zone.
*
* For recording whether a page is in the buddy system, we set PageBuddy.
* Setting, clearing, and testing PageBuddy is serialized by zone->lock.
* For recording page's order, we use page_private(page).
static inline bool page_is_buddy(struct page *page, struct page *buddy,
unsigned int order)
if (!page_is_guard(buddy) && !PageBuddy(buddy))
return false;
if (page_order(buddy) != order)
return false;
/*
* zone check is done late to avoid uselessly calculating
* zone/node ids for pages that could never merge.
*/
if (page_zone_id(page) != page_zone_id(buddy))
return false;
VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
return true;
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
struct capture_control *capc = current->capture_control;
return unlikely(capc) &&
!(current->flags & PF_KTHREAD) &&
!capc->page &&
capc->cc->zone == zone ? capc : NULL;
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
}
static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
int order, int migratetype)
{
if (!capc || order != capc->cc->order)
return false;
/* Do not accidentally pollute CMA or isolated regions*/
if (is_migrate_cma(migratetype) ||
is_migrate_isolate(migratetype))
return false;
/*
* Do not let lower order allocations polluate a movable pageblock.
* This might let an unmovable request use a reclaimable pageblock
* and vice-versa but no more than normal fallback logic which can
* have trouble finding a high-order free page.
*/
if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
return false;
capc->page = page;
return true;
}
#else
static inline struct capture_control *task_capc(struct zone *zone)
{
return NULL;
}
static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
int order, int migratetype)
{
return false;
}
#endif /* CONFIG_COMPACTION */
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/* Used for pages not on another list */
static inline void add_to_free_list(struct page *page, struct zone *zone,
unsigned int order, int migratetype)
{
struct free_area *area = &zone->free_area[order];
list_add(&page->lru, &area->free_list[migratetype]);
area->nr_free++;
}
/* Used for pages not on another list */
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
unsigned int order, int migratetype)
{
struct free_area *area = &zone->free_area[order];
list_add_tail(&page->lru, &area->free_list[migratetype]);
area->nr_free++;
}
/* Used for pages which are on another list */
static inline void move_to_free_list(struct page *page, struct zone *zone,
unsigned int order, int migratetype)
{
struct free_area *area = &zone->free_area[order];
list_move(&page->lru, &area->free_list[migratetype]);
}
static inline void del_page_from_free_list(struct page *page, struct zone *zone,
unsigned int order)
{
/* clear reported state and update reported page count */
if (page_reported(page))
__ClearPageReported(page);
list_del(&page->lru);
__ClearPageBuddy(page);
set_page_private(page, 0);
zone->free_area[order].nr_free--;
}
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
/*
* If this is not the largest possible page, check if the buddy
* of the next-highest order is free. If it is, it's possible
* that pages are being freed that will coalesce soon. In case,
* that is happening, add the free page to the tail of the list
* so it's less likely to be used soon and more likely to be merged
* as a higher order page
*/
static inline bool
buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
struct page *page, unsigned int order)
{
struct page *higher_page, *higher_buddy;
unsigned long combined_pfn;
if (order >= MAX_ORDER - 2)
return false;
if (!pfn_valid_within(buddy_pfn))
return false;
combined_pfn = buddy_pfn & pfn;
higher_page = page + (combined_pfn - pfn);
buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
higher_buddy = higher_page + (buddy_pfn - combined_pfn);
return pfn_valid_within(buddy_pfn) &&
page_is_buddy(higher_page, higher_buddy, order + 1);
}
/*
* Freeing function for a buddy system allocator.
*
* The concept of a buddy system is to maintain direct-mapped table
* (containing bit values) for memory blocks of various "orders".
* The bottom level table contains the map for the smallest allocatable
* units of memory (here, pages), and each level above it describes
* pairs of units from the levels below, hence, "buddies".
* At a high level, all that happens here is marking the table entry
* at the bottom level available, and propagating the changes upward
* as necessary, plus some accounting needed to play nicely with other
* parts of the VM system.
* At each level, we keep a list of pages, which are heads of continuous
* free pages of length of (1 << order) and marked with PageBuddy.
* Page's order is recorded in page_private(page) field.
* So when we are allocating or freeing one, we can derive the state of the
* other. That is, if we allocate a small block, and both were
* free, the remainder of the region must be split into blocks.
* If a block is freed, and its buddy is also free, then this
* triggers coalescing into a block of larger size.
static inline void __free_one_page(struct page *page,
unsigned long pfn,
struct zone *zone, unsigned int order,
struct capture_control *capc = task_capc(zone);
unsigned long combined_pfn;
unsigned int max_order;
struct page *buddy;
bool to_tail;
max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
Cody P Schafer
committed
VM_BUG_ON(!zone_is_initialized(zone));
VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
VM_BUG_ON(migratetype == -1);
if (likely(!is_migrate_isolate(migratetype)))
__mod_zone_freepage_state(zone, 1 << order, migratetype);
VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
VM_BUG_ON_PAGE(bad_range(zone, page), page);
continue_merging:
while (order < max_order - 1) {
if (compaction_capture(capc, page, order, migratetype)) {
__mod_zone_freepage_state(zone, -(1 << order),
migratetype);
return;
}
buddy_pfn = __find_buddy_pfn(pfn, order);
buddy = page + (buddy_pfn - pfn);
if (!pfn_valid_within(buddy_pfn))
goto done_merging;
if (!page_is_buddy(page, buddy, order))
goto done_merging;
/*
* Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
* merge with it and move up one order.
*/
clear_page_guard(zone, buddy, order, migratetype);