Newer
Older
clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
free_mm_slot(mm_slot);
mmdrop(mm);
} else if (mm_slot) {
/*
* This is required to serialize against
* khugepaged_test_exit() (which is guaranteed to run
* under mmap sem read mode). Stop here (after we
* return all pagetables will be destroyed) until
* khugepaged has finished working on the pagetables
* under the mmap_sem.
*/
down_write(&mm->mmap_sem);
up_write(&mm->mmap_sem);
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
}
static void release_pte_page(struct page *page)
{
/* 0 stands for page_is_file_cache(page) == false */
dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
unlock_page(page);
putback_lru_page(page);
}
static void release_pte_pages(pte_t *pte, pte_t *_pte)
{
while (--_pte >= pte) {
pte_t pteval = *_pte;
if (!pte_none(pteval))
release_pte_page(pte_page(pteval));
}
}
static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
unsigned long address,
pte_t *pte)
{
struct page *page;
pte_t *_pte;
for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
_pte++, address += PAGE_SIZE) {
pte_t pteval = *_pte;
if (pte_none(pteval)) {
if (++none <= khugepaged_max_ptes_none)
continue;
if (!pte_present(pteval) || !pte_write(pteval))
goto out;
page = vm_normal_page(vma, address, pteval);
VM_BUG_ON(PageCompound(page));
BUG_ON(!PageAnon(page));
VM_BUG_ON(!PageSwapBacked(page));
/* cannot use mapcount: can't collapse if there's a gup pin */
goto out;
/*
* We can do it before isolate_lru_page because the
* page can't be freed from under us. NOTE: PG_lock
* is needed to serialize against split_huge_page
* when invoked from the VM.
*/
goto out;
/*
* Isolate the page to avoid collapsing an hugepage
* currently in use by the VM.
*/
if (isolate_lru_page(page)) {
unlock_page(page);
goto out;
}
/* 0 stands for page_is_file_cache(page) == false */
inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
VM_BUG_ON(!PageLocked(page));
VM_BUG_ON(PageLRU(page));
/* If there is no mapped pte young don't collapse the page */
if (pte_young(pteval) || PageReferenced(page) ||
mmu_notifier_test_young(vma->vm_mm, address))
if (likely(referenced))
return 1;
release_pte_pages(pte, _pte);
return 0;
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
}
static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
struct vm_area_struct *vma,
unsigned long address,
spinlock_t *ptl)
{
pte_t *_pte;
for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
pte_t pteval = *_pte;
struct page *src_page;
if (pte_none(pteval)) {
clear_user_highpage(page, address);
add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
} else {
src_page = pte_page(pteval);
copy_user_highpage(page, src_page, address, vma);
VM_BUG_ON(page_mapcount(src_page) != 1);
release_pte_page(src_page);
/*
* ptl mostly unnecessary, but preempt has to
* be disabled to update the per-cpu stats
* inside page_remove_rmap().
*/
spin_lock(ptl);
/*
* paravirt calls inside pte_clear here are
* superfluous.
*/
pte_clear(vma->vm_mm, address, _pte);
page_remove_rmap(src_page);
spin_unlock(ptl);
free_page_and_swap_cache(src_page);
}
address += PAGE_SIZE;
page++;
}
}
static void khugepaged_alloc_sleep(void)
wait_event_freezable_timeout(khugepaged_wait, false,
msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
}
#ifdef CONFIG_NUMA
static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
if (IS_ERR(*hpage)) {
if (!*wait)
return false;
*wait = false;
*hpage = NULL;
khugepaged_alloc_sleep();
} else if (*hpage) {
put_page(*hpage);
*hpage = NULL;
}
return true;
}
static struct page
*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
int node)
{
/*
* Allocate the page while the vma is still valid and under
* the mmap_sem read mode so there is no memory allocation
* later when we take the mmap_sem in write mode. This is more
* friendly behavior (OTOH it may actually hide bugs) to
* filesystems in userland with daemons allocating memory in
* the userland I/O paths. Allocating memory with the
* mmap_sem in read mode is good idea also to allow greater
* scalability.
*/
*hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
node, __GFP_OTHER_NODE);
/*
* After allocating the hugepage, release the mmap_sem read lock in
* preparation for taking it in write mode.
*/
up_read(&mm->mmap_sem);
if (unlikely(!*hpage)) {
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
*hpage = ERR_PTR(-ENOMEM);
return NULL;
count_vm_event(THP_COLLAPSE_ALLOC);
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
return *hpage;
}
#else
static struct page *khugepaged_alloc_hugepage(bool *wait)
{
struct page *hpage;
do {
hpage = alloc_hugepage(khugepaged_defrag());
if (!hpage) {
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
if (!*wait)
return NULL;
*wait = false;
khugepaged_alloc_sleep();
} else
count_vm_event(THP_COLLAPSE_ALLOC);
} while (unlikely(!hpage) && likely(khugepaged_enabled()));
return hpage;
}
static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
if (!*hpage)
*hpage = khugepaged_alloc_hugepage(wait);
if (unlikely(!*hpage))
return false;
return true;
}
static struct page
*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
int node)
{
up_read(&mm->mmap_sem);
VM_BUG_ON(!*hpage);
return *hpage;
}
static bool hugepage_vma_check(struct vm_area_struct *vma)
{
if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
(vma->vm_flags & VM_NOHUGEPAGE))
return false;
if (!vma->anon_vma || vma->vm_ops)
return false;
if (is_vma_temporary_stack(vma))
return false;
VM_BUG_ON(vma->vm_flags & VM_NO_THP);
return true;
}
static void collapse_huge_page(struct mm_struct *mm,
unsigned long address,
struct page **hpage,
struct vm_area_struct *vma,
int node)
{
pmd_t *pmd, _pmd;
pte_t *pte;
pgtable_t pgtable;
struct page *new_page;
spinlock_t *ptl;
int isolated;
unsigned long hstart, hend;
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
/* release the mmap_sem read lock. */
new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
if (!new_page)
return;
if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
return;
/*
* Prevent all access to pagetables with the exception of
* gup_fast later hanlded by the ptep_clear_flush and the VM
* handled by the anon_vma lock + PG_lock.
*/
down_write(&mm->mmap_sem);
if (unlikely(khugepaged_test_exit(mm)))
goto out;
vma = find_vma(mm, address);
if (!vma)
goto out;
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
hend = vma->vm_end & HPAGE_PMD_MASK;
if (address < hstart || address + HPAGE_PMD_SIZE > hend)
goto out;
goto out;
Ingo Molnar
committed
anon_vma_lock_write(vma->anon_vma);
pte = pte_offset_map(pmd, address);
ptl = pte_lockptr(mm, pmd);
mmun_start = address;
mmun_end = address + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
spin_lock(&mm->page_table_lock); /* probably unnecessary */
/*
* After this gup_fast can't run anymore. This also removes
* any huge TLB entry from the CPU so we won't allow
* huge and small TLB entries for the same virtual address
* to avoid the risk of CPU bugs in that area.
*/
_pmd = pmdp_clear_flush(vma, address, pmd);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
spin_lock(ptl);
isolated = __collapse_huge_page_isolate(vma, address, pte);
spin_unlock(ptl);
if (unlikely(!isolated)) {
pte_unmap(pte);
spin_lock(&mm->page_table_lock);
BUG_ON(!pmd_none(*pmd));
/*
* We can only use set_pmd_at when establishing
* hugepmds and never for establishing regular pmds that
* points to regular pagetables. Use pmd_populate for that
*/
pmd_populate(mm, pmd, pmd_pgtable(_pmd));
anon_vma_unlock_write(vma->anon_vma);
goto out;
}
/*
* All pages are isolated and locked so anon_vma rmap
* can't run anymore.
*/
anon_vma_unlock_write(vma->anon_vma);
__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
pte_unmap(pte);
__SetPageUptodate(new_page);
pgtable = pmd_pgtable(_pmd);
_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
/*
* spin_lock() below is not the equivalent of smp_wmb(), so
* this is needed to avoid the copy_huge_page writes to become
* visible after the set_pmd_at() write.
*/
smp_wmb();
spin_lock(&mm->page_table_lock);
BUG_ON(!pmd_none(*pmd));
page_add_new_anon_rmap(new_page, vma, address);
pgtable_trans_huge_deposit(mm, pmd, pgtable);
update_mmu_cache_pmd(vma, address, pmd);
spin_unlock(&mm->page_table_lock);
*hpage = NULL;
out_up_write:
out:
mem_cgroup_uncharge_page(new_page);
goto out_up_write;
}
static int khugepaged_scan_pmd(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long address,
struct page **hpage)
{
pmd_t *pmd;
pte_t *pte, *_pte;
int ret = 0, referenced = 0, none = 0;
struct page *page;
unsigned long _address;
spinlock_t *ptl;
goto out;
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
_pte++, _address += PAGE_SIZE) {
pte_t pteval = *_pte;
if (pte_none(pteval)) {
if (++none <= khugepaged_max_ptes_none)
continue;
else
goto out_unmap;
}
if (!pte_present(pteval) || !pte_write(pteval))
goto out_unmap;
page = vm_normal_page(vma, _address, pteval);
if (unlikely(!page))
goto out_unmap;
/*
* Chose the node of the first page. This could
* be more sophisticated and look at more pages,
* but isn't for now.
*/
node = page_to_nid(page);
VM_BUG_ON(PageCompound(page));
if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
goto out_unmap;
/* cannot use mapcount: can't collapse if there's a gup pin */
if (page_count(page) != 1)
goto out_unmap;
if (pte_young(pteval) || PageReferenced(page) ||
mmu_notifier_test_young(vma->vm_mm, address))
referenced = 1;
}
if (referenced)
ret = 1;
out_unmap:
pte_unmap_unlock(pte, ptl);
if (ret)
/* collapse_huge_page will return with the mmap_sem released */
collapse_huge_page(mm, address, hpage, vma, node);
out:
return ret;
}
static void collect_mm_slot(struct mm_slot *mm_slot)
{
struct mm_struct *mm = mm_slot->mm;
VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
if (khugepaged_test_exit(mm)) {
/* free mm_slot */
hash_del(&mm_slot->hash);
list_del(&mm_slot->mm_node);
/*
* Not strictly needed because the mm exited already.
*
* clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
*/
/* khugepaged_mm_lock actually not necessary for the below */
free_mm_slot(mm_slot);
mmdrop(mm);
}
}
static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
struct page **hpage)
__releases(&khugepaged_mm_lock)
__acquires(&khugepaged_mm_lock)
{
struct mm_slot *mm_slot;
struct mm_struct *mm;
struct vm_area_struct *vma;
int progress = 0;
VM_BUG_ON(!pages);
VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
if (khugepaged_scan.mm_slot)
mm_slot = khugepaged_scan.mm_slot;
else {
mm_slot = list_entry(khugepaged_scan.mm_head.next,
struct mm_slot, mm_node);
khugepaged_scan.address = 0;
khugepaged_scan.mm_slot = mm_slot;
}
spin_unlock(&khugepaged_mm_lock);
mm = mm_slot->mm;
down_read(&mm->mmap_sem);
if (unlikely(khugepaged_test_exit(mm)))
vma = NULL;
else
vma = find_vma(mm, khugepaged_scan.address);
progress++;
for (; vma; vma = vma->vm_next) {
unsigned long hstart, hend;
cond_resched();
if (unlikely(khugepaged_test_exit(mm))) {
progress++;
break;
}
if (!hugepage_vma_check(vma)) {
skip:
progress++;
continue;
}
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
hend = vma->vm_end & HPAGE_PMD_MASK;
if (hstart >= hend)
goto skip;
if (khugepaged_scan.address > hend)
goto skip;
if (khugepaged_scan.address < hstart)
khugepaged_scan.address = hstart;
VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
while (khugepaged_scan.address < hend) {
int ret;
cond_resched();
if (unlikely(khugepaged_test_exit(mm)))
goto breakouterloop;
VM_BUG_ON(khugepaged_scan.address < hstart ||
khugepaged_scan.address + HPAGE_PMD_SIZE >
hend);
ret = khugepaged_scan_pmd(mm, vma,
khugepaged_scan.address,
hpage);
/* move to next address */
khugepaged_scan.address += HPAGE_PMD_SIZE;
progress += HPAGE_PMD_NR;
if (ret)
/* we released mmap_sem so break loop */
goto breakouterloop_mmap_sem;
if (progress >= pages)
goto breakouterloop;
}
}
breakouterloop:
up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
breakouterloop_mmap_sem:
spin_lock(&khugepaged_mm_lock);
VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
/*
* Release the current mm_slot if this mm is about to die, or
* if we scanned all vmas of this mm.
*/
if (khugepaged_test_exit(mm) || !vma) {
/*
* Make sure that if mm_users is reaching zero while
* khugepaged runs here, khugepaged_exit will find
* mm_slot not pointing to the exiting mm.
*/
if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
khugepaged_scan.mm_slot = list_entry(
mm_slot->mm_node.next,
struct mm_slot, mm_node);
khugepaged_scan.address = 0;
} else {
khugepaged_scan.mm_slot = NULL;
khugepaged_full_scans++;
}
collect_mm_slot(mm_slot);
}
return progress;
}
static int khugepaged_has_work(void)
{
return !list_empty(&khugepaged_scan.mm_head) &&
khugepaged_enabled();
}
static int khugepaged_wait_event(void)
{
return !list_empty(&khugepaged_scan.mm_head) ||
kthread_should_stop();
static void khugepaged_do_scan(void)
struct page *hpage = NULL;
unsigned int progress = 0, pass_through_head = 0;
unsigned int pages = khugepaged_pages_to_scan;
bool wait = true;
barrier(); /* write khugepaged_pages_to_scan to local stack */
while (progress < pages) {
if (!khugepaged_prealloc_page(&hpage, &wait))
break;
if (unlikely(kthread_should_stop() || freezing(current)))
break;
spin_lock(&khugepaged_mm_lock);
if (!khugepaged_scan.mm_slot)
pass_through_head++;
if (khugepaged_has_work() &&
pass_through_head < 2)
progress += khugepaged_scan_mm_slot(pages - progress,
&hpage);
else
progress = pages;
spin_unlock(&khugepaged_mm_lock);
}
if (!IS_ERR_OR_NULL(hpage))
put_page(hpage);
static void khugepaged_wait_work(void)
{
try_to_freeze();
if (khugepaged_has_work()) {
if (!khugepaged_scan_sleep_millisecs)
return;
wait_event_freezable_timeout(khugepaged_wait,
kthread_should_stop(),
msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
return;
}
if (khugepaged_enabled())
wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
}
static int khugepaged(void *none)
{
struct mm_slot *mm_slot;
while (!kthread_should_stop()) {
khugepaged_do_scan();
khugepaged_wait_work();
}
spin_lock(&khugepaged_mm_lock);
mm_slot = khugepaged_scan.mm_slot;
khugepaged_scan.mm_slot = NULL;
if (mm_slot)
collect_mm_slot(mm_slot);
spin_unlock(&khugepaged_mm_lock);
return 0;
}
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
unsigned long haddr, pmd_t *pmd)
{
struct mm_struct *mm = vma->vm_mm;
pgtable_t pgtable;
pmd_t _pmd;
int i;
pmdp_clear_flush(vma, haddr, pmd);
/* leave pmd empty until pte is filled */
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
pmd_populate(mm, &_pmd, pgtable);
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
pte_t *pte, entry;
entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
entry = pte_mkspecial(entry);
pte = pte_offset_map(&_pmd, haddr);
VM_BUG_ON(!pte_none(*pte));
set_pte_at(mm, haddr, pte, entry);
pte_unmap(pte);
}
smp_wmb(); /* make pte visible before pmd */
pmd_populate(mm, pmd, pgtable);
put_huge_zero_page();
void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmd)
struct mm_struct *mm = vma->vm_mm;
unsigned long haddr = address & HPAGE_PMD_MASK;
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
mmun_start = haddr;
mmun_end = haddr + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_trans_huge(*pmd))) {
spin_unlock(&mm->page_table_lock);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
return;
}
if (is_huge_zero_pmd(*pmd)) {
__split_huge_zero_page_pmd(vma, haddr, pmd);
spin_unlock(&mm->page_table_lock);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
return;
}
page = pmd_page(*pmd);
VM_BUG_ON(!page_count(page));
get_page(page);
spin_unlock(&mm->page_table_lock);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
split_huge_page(page);
put_page(page);
BUG_ON(pmd_trans_huge(*pmd));
}
void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
pmd_t *pmd)
{
struct vm_area_struct *vma;
vma = find_vma(mm, address);
BUG_ON(vma == NULL);
split_huge_page_pmd(vma, address, pmd);
}
static void split_huge_page_address(struct mm_struct *mm,
unsigned long address)
{
pmd_t *pmd;
VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
return;
/*
* Caller holds the mmap_sem write mode, so a huge pmd cannot
* materialize from under us.
*/
split_huge_page_pmd_mm(mm, address, pmd);
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
}
void __vma_adjust_trans_huge(struct vm_area_struct *vma,
unsigned long start,
unsigned long end,
long adjust_next)
{
/*
* If the new start address isn't hpage aligned and it could
* previously contain an hugepage: check if we need to split
* an huge pmd.
*/
if (start & ~HPAGE_PMD_MASK &&
(start & HPAGE_PMD_MASK) >= vma->vm_start &&
(start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
split_huge_page_address(vma->vm_mm, start);
/*
* If the new end address isn't hpage aligned and it could
* previously contain an hugepage: check if we need to split
* an huge pmd.
*/
if (end & ~HPAGE_PMD_MASK &&
(end & HPAGE_PMD_MASK) >= vma->vm_start &&
(end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
split_huge_page_address(vma->vm_mm, end);
/*
* If we're also updating the vma->vm_next->vm_start, if the new
* vm_next->vm_start isn't page aligned and it could previously
* contain an hugepage: check if we need to split an huge pmd.
*/
if (adjust_next > 0) {
struct vm_area_struct *next = vma->vm_next;
unsigned long nstart = next->vm_start;
nstart += adjust_next << PAGE_SHIFT;
if (nstart & ~HPAGE_PMD_MASK &&
(nstart & HPAGE_PMD_MASK) >= next->vm_start &&
(nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
split_huge_page_address(next->vm_mm, nstart);
}
}