Newer
Older
/* memcontrol.c - Memory Controller
*
* Copyright IBM Corporation, 2007
* Author Balbir Singh <balbir@linux.vnet.ibm.com>
*
* Copyright 2007 OpenVZ SWsoft Inc
* Author: Pavel Emelianov <xemul@openvz.org>
*
* Memory thresholds
* Copyright (C) 2009 Nokia Corporation
* Author: Kirill A. Shutemov
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
KAMEZAWA Hiroyuki
committed
#include <linux/smp.h>
#include <linux/backing-dev.h>
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/eventfd.h>
#include <linux/sort.h>
#include <linux/seq_file.h>
#include <linux/vmalloc.h>
#include <linux/mm_inline.h>
#include <linux/page_cgroup.h>
#include <linux/oom.h>
#include <asm/uaccess.h>
#include <trace/events/vmscan.h>
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES 5
struct mem_cgroup *root_mem_cgroup __read_mostly;
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
int do_swap_account __read_mostly;
/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif
#else
#define do_swap_account (0)
#endif
/*
* Per memcg event counter is incremented at every pagein/pageout. This counter
* is used for trigger some periodic events. This is straightforward and better
* than using jiffies etc. to handle periodic memcg event.
*
* These values will be used as !((event) & ((1 <<(thresh)) - 1))
*/
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
KAMEZAWA Hiroyuki
committed
/*
* Statistics for memory cgroup.
*/
enum mem_cgroup_stat_index {
/*
* For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
*/
MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
/* incremented at every pagein/pageout */
MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
KAMEZAWA Hiroyuki
committed
MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
KAMEZAWA Hiroyuki
committed
MEM_CGROUP_STAT_NSTATS,
};
struct mem_cgroup_stat_cpu {
s64 count[MEM_CGROUP_STAT_NSTATS];
};
KAMEZAWA Hiroyuki
committed
/*
* per-zone information in memory controller.
*/
struct mem_cgroup_per_zone {
KAMEZAWA Hiroyuki
committed
/*
* spin_lock to protect the per cgroup LRU
*/
struct list_head lists[NR_LRU_LISTS];
unsigned long count[NR_LRU_LISTS];
struct zone_reclaim_stat reclaim_stat;
struct rb_node tree_node; /* RB tree node */
unsigned long long usage_in_excess;/* Set to the value by which */
/* the soft limit is exceeded*/
bool on_tree;
struct mem_cgroup *mem; /* Back pointer, we cannot */
/* use container_of */
KAMEZAWA Hiroyuki
committed
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
struct mem_cgroup_per_node {
struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};
struct mem_cgroup_lru_info {
struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};
/*
* Cgroups above their limits are maintained in a RB-Tree, independent of
* their hierarchy representation
*/
struct mem_cgroup_tree_per_zone {
struct rb_root rb_root;
spinlock_t lock;
};
struct mem_cgroup_tree_per_node {
struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};
struct mem_cgroup_tree {
struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};
static struct mem_cgroup_tree soft_limit_tree __read_mostly;
struct mem_cgroup_threshold {
struct eventfd_ctx *eventfd;
u64 threshold;
};
struct mem_cgroup_threshold_ary {
/* An array index points to threshold just below usage. */
/* Size of entries[] */
unsigned int size;
/* Array of thresholds */
struct mem_cgroup_threshold entries[0];
};
struct mem_cgroup_thresholds {
/* Primary thresholds array */
struct mem_cgroup_threshold_ary *primary;
/*
* Spare threshold array.
* This is needed to make mem_cgroup_unregister_event() "never fail".
* It must be able to store at least primary->size - 1 entries.
*/
struct mem_cgroup_threshold_ary *spare;
};
/* for OOM */
struct mem_cgroup_eventfd_list {
struct list_head list;
struct eventfd_ctx *eventfd;
};
static void mem_cgroup_threshold(struct mem_cgroup *mem);
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
/*
* The memory controller data structure. The memory controller controls both
* page cache and RSS per cgroup. We would eventually like to provide
* statistics based on the statistics developed by Rik Van Riel for clock-pro,
* to help the administrator determine what knobs to tune.
*
* TODO: Add a water mark for the memory controller. Reclaim will begin when
* we hit the water mark. May be even add a low water mark, such that
* no reclaim occurs from a cgroup at it's low water mark, this is
* a feature that will be implemented much later in the future.
*/
struct mem_cgroup {
struct cgroup_subsys_state css;
/*
* the counter to account for memory usage
*/
struct res_counter res;
/*
* the counter to account for mem+swap usage.
*/
struct res_counter memsw;
/*
* Per cgroup active and inactive list, similar to the
* per zone LRU lists.
*/
KAMEZAWA Hiroyuki
committed
struct mem_cgroup_lru_info info;
* While reclaiming in a hierarchy, we cache the last child we
/*
* Should the accounting and control be hierarchical, per subtree?
*/
bool use_hierarchy;
/* OOM-Killer disable */
int oom_kill_disable;
/* set when res.limit == memsw.limit */
bool memsw_is_minimum;
/* protect arrays of thresholds */
struct mutex thresholds_lock;
/* thresholds for memory usage. RCU-protected */
struct mem_cgroup_thresholds thresholds;
/* thresholds for mem+swap usage. RCU-protected */
struct mem_cgroup_thresholds memsw_thresholds;
/* For oom notifier event fd */
struct list_head oom_notify;
/*
* Should we move charges of a task when a task is moved into this
* mem_cgroup ? And what type of charges should we move ?
*/
unsigned long move_charge_at_immigrate;
KAMEZAWA Hiroyuki
committed
/*
* percpu counter.
KAMEZAWA Hiroyuki
committed
*/
struct mem_cgroup_stat_cpu *stat;
/*
* used when a cpu is offlined or other synchronizations
* See mem_cgroup_read_stat().
*/
struct mem_cgroup_stat_cpu nocpu_base;
spinlock_t pcp_counter_lock;
/* Stuffs for move charges at task migration. */
/*
* Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
* left-shifted bitmap of these types.
*/
enum move_type {
MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
NR_MOVE_TYPE,
};
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
spinlock_t lock; /* for from, to */
struct mem_cgroup *from;
struct mem_cgroup *to;
unsigned long precharge;
unsigned long moved_charge;
unsigned long moved_swap;
struct task_struct *moving_task; /* a task moving charges */
wait_queue_head_t waitq; /* a waitq for other context */
} mc = {
.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
static bool move_anon(void)
{
return test_bit(MOVE_CHARGE_TYPE_ANON,
&mc.to->move_charge_at_immigrate);
}
static bool move_file(void)
{
return test_bit(MOVE_CHARGE_TYPE_FILE,
&mc.to->move_charge_at_immigrate);
}
/*
* Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
* limit reclaim to prevent infinite loops, if they ever occur.
*/
#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
enum charge_type {
MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
MEM_CGROUP_CHARGE_TYPE_MAPPED,
MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
/* for encoding cft->private value on file */
#define _MEM (0)
#define _MEMSWAP (1)
#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val) ((val) & 0xffff)
/* Used for OOM nofiier */
#define OOM_CONTROL (0)
/*
* Reclaim flags for mem_cgroup_hierarchical_reclaim
*/
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
static void drain_all_stock_async(void);
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
return &mem->css;
}
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
int nid = page_to_nid(page);
int zid = page_zonenum(page);
return mem_cgroup_zoneinfo(mem, nid, zid);
}
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
int nid = page_to_nid(page);
int zid = page_zonenum(page);
return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}
static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz,
unsigned long long new_usage_in_excess)
{
struct rb_node **p = &mctz->rb_root.rb_node;
struct rb_node *parent = NULL;
struct mem_cgroup_per_zone *mz_node;
if (mz->on_tree)
return;
mz->usage_in_excess = new_usage_in_excess;
if (!mz->usage_in_excess)
return;
while (*p) {
parent = *p;
mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
tree_node);
if (mz->usage_in_excess < mz_node->usage_in_excess)
p = &(*p)->rb_left;
/*
* We can't avoid mem cgroups that are over their soft
* limit by the same amount
*/
else if (mz->usage_in_excess >= mz_node->usage_in_excess)
p = &(*p)->rb_right;
}
rb_link_node(&mz->tree_node, parent, p);
rb_insert_color(&mz->tree_node, &mctz->rb_root);
mz->on_tree = true;
}
static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz)
{
if (!mz->on_tree)
return;
rb_erase(&mz->tree_node, &mctz->rb_root);
mz->on_tree = false;
}
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
struct mem_cgroup_per_zone *mz,
struct mem_cgroup_tree_per_zone *mctz)
{
spin_lock(&mctz->lock);
__mem_cgroup_remove_exceeded(mem, mz, mctz);
spin_unlock(&mctz->lock);
}
static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
struct mem_cgroup_per_zone *mz;
struct mem_cgroup_tree_per_zone *mctz;
KAMEZAWA Hiroyuki
committed
int nid = page_to_nid(page);
int zid = page_zonenum(page);
mctz = soft_limit_tree_from_page(page);
/*
KAMEZAWA Hiroyuki
committed
* Necessary to update all ancestors when hierarchy is used.
* because their event counter is not touched.
KAMEZAWA Hiroyuki
committed
for (; mem; mem = parent_mem_cgroup(mem)) {
mz = mem_cgroup_zoneinfo(mem, nid, zid);
excess = res_counter_soft_limit_excess(&mem->res);
KAMEZAWA Hiroyuki
committed
/*
* We have to update the tree if mz is on RB-tree or
* mem is over its softlimit.
*/
if (excess || mz->on_tree) {
KAMEZAWA Hiroyuki
committed
spin_lock(&mctz->lock);
/* if on-tree, remove it */
if (mz->on_tree)
__mem_cgroup_remove_exceeded(mem, mz, mctz);
/*
* Insert again. mz->usage_in_excess will be updated.
* If excess is 0, no tree ops.
KAMEZAWA Hiroyuki
committed
*/
__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
KAMEZAWA Hiroyuki
committed
spin_unlock(&mctz->lock);
}
}
}
static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
int node, zone;
struct mem_cgroup_per_zone *mz;
struct mem_cgroup_tree_per_zone *mctz;
for_each_node_state(node, N_POSSIBLE) {
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
mz = mem_cgroup_zoneinfo(mem, node, zone);
mctz = soft_limit_tree_node_zone(node, zone);
mem_cgroup_remove_exceeded(mem, mz, mctz);
}
}
}
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
struct rb_node *rightmost = NULL;
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
rightmost = rb_last(&mctz->rb_root);
if (!rightmost)
goto done; /* Nothing to reclaim from */
mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
/*
* Remove the node now but someone else can add it back,
* we will to add it back at the end of reclaim to its correct
* position in the tree.
*/
__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
if (!res_counter_soft_limit_excess(&mz->mem->res) ||
!css_tryget(&mz->mem->css))
goto retry;
done:
return mz;
}
static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
struct mem_cgroup_per_zone *mz;
spin_lock(&mctz->lock);
mz = __mem_cgroup_largest_soft_limit_node(mctz);
spin_unlock(&mctz->lock);
return mz;
}
/*
* Implementation Note: reading percpu statistics for memcg.
*
* Both of vmstat[] and percpu_counter has threshold and do periodic
* synchronization to implement "quick" read. There are trade-off between
* reading cost and precision of value. Then, we may have a chance to implement
* a periodic synchronizion of counter in memcg's counter.
*
* But this _read() function is used for user interface now. The user accounts
* memory usage by memory cgroup and he _always_ requires exact value because
* he accounts memory. Even if we provide quick-and-fuzzy read, we always
* have to visit all online cpus and make sum. So, for now, unnecessary
* synchronization is not implemented. (just implemented for cpu hotplug)
*
* If there are kernel internal actions which can make use of some not-exact
* value, and reading all cpu value can be performance bottleneck in some
* common workload, threashold and synchonization as vmstat[] should be
* implemented.
*/
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
enum mem_cgroup_stat_index idx)
{
int cpu;
s64 val = 0;
get_online_cpus();
for_each_online_cpu(cpu)
val += per_cpu(mem->stat->count[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
spin_lock(&mem->pcp_counter_lock);
val += mem->nocpu_base.count[idx];
spin_unlock(&mem->pcp_counter_lock);
#endif
put_online_cpus();
return val;
}
static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
s64 ret;
ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
return ret;
}
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
bool charge)
{
int val = (charge) ? 1 : -1;
this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
bool file, int nr_pages)
KAMEZAWA Hiroyuki
committed
{
preempt_disable();
if (file)
__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
KAMEZAWA Hiroyuki
committed
else
__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
/* pagein of a big page is an event. So, ignore page size */
if (nr_pages > 0)
__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
nr_pages = -nr_pages; /* for event */
}
__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
preempt_enable();
KAMEZAWA Hiroyuki
committed
}
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
KAMEZAWA Hiroyuki
committed
{
int nid, zid;
struct mem_cgroup_per_zone *mz;
u64 total = 0;
for_each_online_node(nid)
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
mz = mem_cgroup_zoneinfo(mem, nid, zid);
total += MEM_CGROUP_ZSTAT(mz, idx);
}
return total;
KAMEZAWA Hiroyuki
committed
}
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
s64 val;
val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
return !(val & ((1 << event_mask_shift) - 1));
}
/*
* Check events in order.
*
*/
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
/* threshold event is triggered in finer grain than soft limit */
if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
mem_cgroup_threshold(mem);
if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
mem_cgroup_update_tree(mem, page);
}
}
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
return container_of(cgroup_subsys_state(cont,
mem_cgroup_subsys_id), struct mem_cgroup,
css);
}
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
/*
* mm_update_next_owner() may clear mm->owner to NULL
* if it races with swapoff, page migration, etc.
* So this can be called with p == NULL.
*/
if (unlikely(!p))
return NULL;
return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
struct mem_cgroup, css);
}
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
struct mem_cgroup *mem = NULL;
/*
* Because we have no locks, mm->owner's may be being moved to other
* cgroup. We use css_tryget() here even if this looks
* pessimistic (rather than adding locks here).
*/
rcu_read_lock();
do {
mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (unlikely(!mem))
break;
} while (!css_tryget(&mem->css));
rcu_read_unlock();
return mem;
}
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
struct cgroup_subsys_state *css;
int found;
if (!mem) /* ROOT cgroup has the smallest ID */
return root_mem_cgroup; /*css_put/get against root is ignored*/
if (!mem->use_hierarchy) {
if (css_tryget(&mem->css))
return mem;
return NULL;
}
rcu_read_lock();
/*
* searching a memory cgroup which has the smallest ID under given
* ROOT cgroup. (ID >= 1)
*/
css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
if (css && css_tryget(css))
mem = container_of(css, struct mem_cgroup, css);
else
mem = NULL;
rcu_read_unlock();
return mem;
}
static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
struct mem_cgroup *root,
bool cond)
{
int nextid = css_id(&iter->css) + 1;
int found;
int hierarchy_used;
hierarchy_used = iter->use_hierarchy;
/* If no ROOT, walk all, ignore hierarchy */
if (!cond || (root && !hierarchy_used))
if (!root)
root = root_mem_cgroup;
css = css_get_next(&mem_cgroup_subsys, nextid,
&root->css, &found);
iter = container_of(css, struct mem_cgroup, css);
/* If css is NULL, no more cgroups will be found */
/*
* for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
* be careful that "break" loop is not allowed. We have reference count.
* Instead of that modify "cond" to be false and "continue" to exit the loop.
*/
#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
for (iter = mem_cgroup_start_loop(root);\
iter != NULL;\
iter = mem_cgroup_get_next(iter, root, cond))
#define for_each_mem_cgroup_tree(iter, root) \
for_each_mem_cgroup_tree_cond(iter, root, true)
#define for_each_mem_cgroup_all(iter) \
for_each_mem_cgroup_tree_cond(iter, NULL, true)
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
return (mem == root_mem_cgroup);
}
/*
* Following LRU functions are allowed to be used without PCG_LOCK.
* Operations are called by routine of global LRU independently from memcg.
* What we have to take care of here is validness of pc->mem_cgroup.
*
* Changes to pc->mem_cgroup happens when
* 1. charge
* 2. moving account
* In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
* It is added to LRU before charge.
* If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
* When moving account, the page is not on LRU. It's isolated.
*/
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
struct page_cgroup *pc;
struct mem_cgroup_per_zone *mz;
KAMEZAWA Hiroyuki
committed
return;
pc = lookup_page_cgroup(page);
/* can happen while we handle swapcache. */
if (!TestClearPageCgroupAcctLRU(pc))
VM_BUG_ON(!pc->mem_cgroup);
/*
* We don't check PCG_USED bit. It's cleared when the "page" is finally
* removed from global LRU.
*/
mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
/* huge page split is done under lru_lock. so, we have no races. */
MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
if (mem_cgroup_is_root(pc->mem_cgroup))
return;
VM_BUG_ON(list_empty(&pc->lru));
KAMEZAWA Hiroyuki
committed
}
KAMEZAWA Hiroyuki
committed
{
mem_cgroup_del_lru_list(page, page_lru(page));
}
/*
* Writeback is about to end against a page which has been marked for immediate
* reclaim. If it still appears to be reclaimable, move it to the tail of the
* inactive list.
*/
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
struct mem_cgroup_per_zone *mz;
struct page_cgroup *pc;
enum lru_list lru = page_lru(page);
if (mem_cgroup_disabled())
return;
pc = lookup_page_cgroup(page);
/* unused or root page is not rotated. */
if (!PageCgroupUsed(pc))
return;
/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
smp_rmb();
if (mem_cgroup_is_root(pc->mem_cgroup))
return;
mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
list_move_tail(&pc->lru, &mz->lists[lru]);
}
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
struct mem_cgroup_per_zone *mz;
struct page_cgroup *pc;
KAMEZAWA Hiroyuki
committed
/* unused or root page is not rotated. */
if (!PageCgroupUsed(pc))
return;
/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
smp_rmb();
if (mem_cgroup_is_root(pc->mem_cgroup))
mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
KAMEZAWA Hiroyuki
committed
}
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
struct page_cgroup *pc;
struct mem_cgroup_per_zone *mz;
KAMEZAWA Hiroyuki
committed
VM_BUG_ON(PageCgroupAcctLRU(pc));
/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
smp_rmb();
mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
/* huge page split is done under lru_lock. so, we have no races. */
MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
SetPageCgroupAcctLRU(pc);
if (mem_cgroup_is_root(pc->mem_cgroup))
return;
* At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
* lru because the page may.be reused after it's fully uncharged (because of
* SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
* it again. This function is only used to charge SwapCache. It's done under
* lock_page and expected that zone->lru_lock is never held.
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
unsigned long flags;
struct zone *zone = page_zone(page);
struct page_cgroup *pc = lookup_page_cgroup(page);
spin_lock_irqsave(&zone->lru_lock, flags);
/*
* Forget old LRU when this page_cgroup is *not* used. This Used bit
* is guarded by lock_page() because the page is SwapCache.
*/
if (!PageCgroupUsed(pc))
mem_cgroup_del_lru_list(page, page_lru(page));
spin_unlock_irqrestore(&zone->lru_lock, flags);
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
unsigned long flags;
struct zone *zone = page_zone(page);
struct page_cgroup *pc = lookup_page_cgroup(page);
spin_lock_irqsave(&zone->lru_lock, flags);
/* link when the page is linked to LRU but page_cgroup isn't */
if (PageLRU(page) && !PageCgroupAcctLRU(pc))
mem_cgroup_add_lru_list(page, page_lru(page));
spin_unlock_irqrestore(&zone->lru_lock, flags);
}
void mem_cgroup_move_lists(struct page *page,
enum lru_list from, enum lru_list to)
{
return;
mem_cgroup_del_lru_list(page, from);
mem_cgroup_add_lru_list(page, to);
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
int ret;
struct task_struct *p;
p = find_lock_task_mm(task);
if (!p)
return 0;
curr = try_get_mem_cgroup_from_mm(p->mm);
task_unlock(p);
/*
* We should check use_hierarchy of "mem" not "curr". Because checking
* use_hierarchy of "curr" here make this function true if hierarchy is
* enabled in "curr" and "curr" is a child of "mem" in *cgroup*
* hierarchy(even if use_hierarchy is disabled in "mem").
*/
if (mem->use_hierarchy)
ret = css_is_ancestor(&curr->css, &mem->css);
else
ret = (curr == mem);
css_put(&curr->css);
return ret;
}
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
{
unsigned long active;
unsigned long inactive;
unsigned long gb;
unsigned long inactive_ratio;
inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
gb = (inactive + active) >> (30 - PAGE_SHIFT);
if (gb)
inactive_ratio = int_sqrt(10 * gb);
else
inactive_ratio = 1;
if (present_pages) {
present_pages[0] = inactive;
present_pages[1] = active;
}
return inactive_ratio;
}
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
unsigned long active;
unsigned long inactive;
unsigned long present_pages[2];
unsigned long inactive_ratio;
inactive_ratio = calc_inactive_ratio(memcg, present_pages);
inactive = present_pages[0];
active = present_pages[1];
if (inactive * inactive_ratio < active)
return 1;
return 0;
}
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
unsigned long active;
unsigned long inactive;
inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);