Newer
Older
/*
* linux/mm/swapfile.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
*/
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/namei.h>
#include <linux/shm.h>
#include <linux/blkdev.h>
#include <linux/writeback.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/rmap.h>
#include <linux/security.h>
#include <linux/backing-dev.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <linux/swapops.h>
unsigned int nr_swapfiles;
long total_swap_pages;
static int swap_overflow;
static const char Bad_file[] = "Bad swap file entry ";
static const char Unused_file[] = "Unused swap file entry ";
static const char Bad_offset[] = "Bad swap offset entry ";
static const char Unused_offset[] = "Unused swap offset entry ";
struct swap_list_t swap_list = {-1, -1};
static struct swap_info_struct swap_info[MAX_SWAPFILES];
/*
* We need this because the bdev->unplug_fn can sleep and we cannot
* hold swap_lock while calling the unplug_fn. And swap_lock
*/
static DECLARE_RWSEM(swap_unplug_sem);
void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
{
swp_entry_t entry;
down_read(&swap_unplug_sem);
if (PageSwapCache(page)) {
struct block_device *bdev = swap_info[swp_type(entry)].bdev;
struct backing_dev_info *bdi;
/*
* If the page is removed from swapcache from under us (with a
* racy try_to_unuse/swapoff) we need an additional reference
* count to avoid reading garbage from page_private(page) above.
* If the WARN_ON triggers during a swapoff it maybe the race
* condition and it's harmless. However if it triggers without
* swapoff it signals a problem.
*/
WARN_ON(page_count(page) <= 1);
bdi = bdev->bd_inode->i_mapping->backing_dev_info;
#define SWAPFILE_CLUSTER 256
#define LATENCY_LIMIT 256
static inline unsigned long scan_swap_map(struct swap_info_struct *si)
unsigned long offset, last_in_cluster;
int latency_ration = LATENCY_LIMIT;
* We try to cluster swap pages by allocating them sequentially
* in swap. Once we've allocated SWAPFILE_CLUSTER pages this
* way, however, we resort to first-free allocation, starting
* a new cluster. This prevents us from scattering swap pages
* all over the entire swap partition, so that we reduce
* overall disk seek times between swap pages. -- sct
* But we do now try to find an empty cluster. -Andrea
*/
si->flags += SWP_SCANNING;
if (unlikely(!si->cluster_nr)) {
si->cluster_nr = SWAPFILE_CLUSTER - 1;
if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
goto lowest;
offset = si->lowest_bit;
last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
/* Locate the first empty (unaligned) cluster */
for (; last_in_cluster <= si->highest_bit; offset++) {
last_in_cluster = offset + SWAPFILE_CLUSTER;
else if (offset == last_in_cluster) {
si->cluster_next = offset-SWAPFILE_CLUSTER+1;
if (unlikely(--latency_ration < 0)) {
cond_resched();
latency_ration = LATENCY_LIMIT;
}
si->cluster_nr--;
cluster:
offset = si->cluster_next;
if (offset > si->highest_bit)
lowest: offset = si->lowest_bit;
checks: if (!(si->flags & SWP_WRITEOK))
goto no_page;
if (!si->highest_bit)
goto no_page;
if (!si->swap_map[offset]) {
if (offset == si->lowest_bit)
si->lowest_bit++;
if (offset == si->highest_bit)
si->highest_bit--;
si->inuse_pages++;
if (si->inuse_pages == si->pages) {
si->lowest_bit = si->max;
si->highest_bit = 0;
}
si->swap_map[offset] = 1;
si->flags -= SWP_SCANNING;
while (++offset <= si->highest_bit) {
if (!si->swap_map[offset]) {
if (unlikely(--latency_ration < 0)) {
cond_resched();
latency_ration = LATENCY_LIMIT;
}
si->flags -= SWP_SCANNING;
return 0;
}
swp_entry_t get_swap_page(void)
{
struct swap_info_struct *si;
pgoff_t offset;
int type, next;
int wrapped = 0;
goto noswap;
nr_swap_pages--;
for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
si = swap_info + type;
next = si->next;
if (next < 0 ||
(!wrapped && si->prio != swap_info[next].prio)) {
next = swap_list.head;
wrapped++;
if (!si->highest_bit)
continue;
if (!(si->flags & SWP_WRITEOK))
continue;
swap_list.next = next;
offset = scan_swap_map(si);
if (offset) {
spin_unlock(&swap_lock);
return swp_entry(type, offset);
nr_swap_pages++;
noswap:
return (swp_entry_t) {0};
swp_entry_t get_swap_page_of_type(int type)
{
struct swap_info_struct *si;
pgoff_t offset;
spin_lock(&swap_lock);
si = swap_info + type;
if (si->flags & SWP_WRITEOK) {
nr_swap_pages--;
offset = scan_swap_map(si);
if (offset) {
spin_unlock(&swap_lock);
return swp_entry(type, offset);
}
nr_swap_pages++;
}
spin_unlock(&swap_lock);
return (swp_entry_t) {0};
}
static struct swap_info_struct * swap_info_get(swp_entry_t entry)
{
struct swap_info_struct * p;
unsigned long offset, type;
if (!entry.val)
goto out;
type = swp_type(entry);
if (type >= nr_swapfiles)
goto bad_nofile;
p = & swap_info[type];
if (!(p->flags & SWP_USED))
goto bad_device;
offset = swp_offset(entry);
if (offset >= p->max)
goto bad_offset;
if (!p->swap_map[offset])
goto bad_free;
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
return p;
bad_free:
printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
goto out;
bad_offset:
printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
goto out;
bad_device:
printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
goto out;
bad_nofile:
printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
out:
return NULL;
}
static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
{
int count = p->swap_map[offset];
if (count < SWAP_MAP_MAX) {
count--;
p->swap_map[offset] = count;
if (!count) {
if (offset < p->lowest_bit)
p->lowest_bit = offset;
if (offset > p->highest_bit)
p->highest_bit = offset;
if (p->prio > swap_info[swap_list.next].prio)
swap_list.next = p - swap_info;
nr_swap_pages++;
p->inuse_pages--;
}
}
return count;
}
/*
* Caller has made sure that the swapdevice corresponding to entry
* is still around or has not been recycled.
*/
void swap_free(swp_entry_t entry)
{
struct swap_info_struct * p;
p = swap_info_get(entry);
if (p) {
swap_entry_free(p, swp_offset(entry));
* How many references to page are currently swapped out?
static inline int page_swapcount(struct page *page)
int count = 0;
struct swap_info_struct *p;
/* Subtract the 1 for the swap cache itself */
count = p->swap_map[swp_offset(entry)] - 1;
}
/*
* We can use this swap cache entry directly
* if there are no other references to it.
*/
int can_share_swap_page(struct page *page)
{
int count;
BUG_ON(!PageLocked(page));
count = page_mapcount(page);
if (count <= 1 && PageSwapCache(page))
count += page_swapcount(page);
return count == 1;
}
/*
* Work out if there are any other processes sharing this
* swap cache page. Free it if you can. Return success.
*/
int remove_exclusive_swap_page(struct page *page)
{
int retval;
struct swap_info_struct * p;
swp_entry_t entry;
BUG_ON(PagePrivate(page));
BUG_ON(!PageLocked(page));
if (!PageSwapCache(page))
return 0;
if (PageWriteback(page))
return 0;
if (page_count(page) != 2) /* 2: us + cache */
return 0;
p = swap_info_get(entry);
if (!p)
return 0;
/* Is the only swap cache user the cache itself? */
retval = 0;
if (p->swap_map[swp_offset(entry)] == 1) {
/* Recheck the page count with the swapcache lock held.. */
write_lock_irq(&swapper_space.tree_lock);
if ((page_count(page) == 2) && !PageWriteback(page)) {
__delete_from_swap_cache(page);
SetPageDirty(page);
retval = 1;
}
write_unlock_irq(&swapper_space.tree_lock);
}
if (retval) {
swap_free(entry);
page_cache_release(page);
}
return retval;
}
/*
* Free the swap entry like above, but also try to
* free the page cache entry if it is the last user.
*/
void free_swap_and_cache(swp_entry_t entry)
{
struct swap_info_struct * p;
struct page *page = NULL;
if (is_migration_entry(entry))
return;
if (swap_entry_free(p, swp_offset(entry)) == 1) {
page = find_get_page(&swapper_space, entry.val);
if (page && unlikely(TestSetPageLocked(page))) {
page_cache_release(page);
page = NULL;
}
}
}
if (page) {
int one_user;
BUG_ON(PagePrivate(page));
one_user = (page_count(page) == 2);
/* Only cache user (+us), or swap space full? Free it! */
/* Also recheck PageSwapCache after page is locked (above) */
if (PageSwapCache(page) && !PageWriteback(page) &&
(one_user || vm_swap_full())) {
delete_from_swap_cache(page);
SetPageDirty(page);
}
unlock_page(page);
page_cache_release(page);
}
}
#ifdef CONFIG_HIBERNATION
* Find the swap type that corresponds to given device (if any).
* @offset - number of the PAGE_SIZE-sized block of the device, starting
* from 0, in which the swap header is expected to be located.
*
* This is needed for the suspend to disk (aka swsusp).
int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
struct block_device *bdev = NULL;
if (device)
bdev = bdget(device);
spin_lock(&swap_lock);
for (i = 0; i < nr_swapfiles; i++) {
struct swap_info_struct *sis = swap_info + i;
if (!(sis->flags & SWP_WRITEOK))
if (!bdev) {
if (bdev_p)
*bdev_p = sis->bdev;
spin_unlock(&swap_lock);
return i;
}
if (bdev == sis->bdev) {
struct swap_extent *se;
se = list_entry(sis->extent_list.next,
struct swap_extent, list);
if (se->start_block == offset) {
if (bdev_p)
*bdev_p = sis->bdev;
spin_unlock(&swap_lock);
bdput(bdev);
return i;
}
}
}
spin_unlock(&swap_lock);
if (bdev)
bdput(bdev);
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
return -ENODEV;
}
/*
* Return either the total number of swap pages of given type, or the number
* of free pages of that type (depending on @free)
*
* This is needed for software suspend
*/
unsigned int count_swap_pages(int type, int free)
{
unsigned int n = 0;
if (type < nr_swapfiles) {
spin_lock(&swap_lock);
if (swap_info[type].flags & SWP_WRITEOK) {
n = swap_info[type].pages;
if (free)
n -= swap_info[type].inuse_pages;
}
spin_unlock(&swap_lock);
}
return n;
}
#endif
* No need to decide whether this PTE shares the swap entry with others,
* just let do_wp_page work it out if a write is requested later - to
* force COW, vm_page_prot omits write permission from any private vma.
static int unuse_pte(struct vm_area_struct *vma, pte_t *pte,
unsigned long addr, swp_entry_t entry, struct page *page)
{
if (mem_cgroup_charge(page, vma->vm_mm))
return -ENOMEM;
inc_mm_counter(vma->vm_mm, anon_rss);
get_page(page);
set_pte_at(vma->vm_mm, addr, pte,
pte_mkold(mk_pte(page, vma->vm_page_prot)));
page_add_anon_rmap(page, vma, addr);
swap_free(entry);
/*
* Move the page to the active list so it is not
* immediately swapped out again after swapon.
*/
activate_page(page);
}
static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end,
swp_entry_t entry, struct page *page)
{
pte_t swp_pte = swp_entry_to_pte(entry);
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
do {
/*
* swapoff spends a _lot_ of time in this loop!
* Test inline before going to call unuse_pte.
*/
if (unlikely(pte_same(*pte, swp_pte))) {
ret = unuse_pte(vma, pte++, addr, entry, page);
}
} while (pte++, addr += PAGE_SIZE, addr != end);
pte_unmap_unlock(pte - 1, ptl);
}
static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
unsigned long addr, unsigned long end,
swp_entry_t entry, struct page *page)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_none_or_clear_bad(pmd))
continue;
ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
if (ret)
return ret;
} while (pmd++, addr = next, addr != end);
return 0;
}
static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
unsigned long addr, unsigned long end,
swp_entry_t entry, struct page *page)
{
pud_t *pud;
unsigned long next;
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;
ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
if (ret)
return ret;
} while (pud++, addr = next, addr != end);
return 0;
}
static int unuse_vma(struct vm_area_struct *vma,
swp_entry_t entry, struct page *page)
{
pgd_t *pgd;
unsigned long addr, end, next;
if (page->mapping) {
addr = page_address_in_vma(page, vma);
if (addr == -EFAULT)
return 0;
else
end = addr + PAGE_SIZE;
} else {
addr = vma->vm_start;
end = vma->vm_end;
}
pgd = pgd_offset(vma->vm_mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
if (ret)
return ret;
} while (pgd++, addr = next, addr != end);
return 0;
}
static int unuse_mm(struct mm_struct *mm,
swp_entry_t entry, struct page *page)
{
struct vm_area_struct *vma;
* Activate page so shrink_cache is unlikely to unmap its
* ptes while lock is dropped, so swapoff can make progress.
unlock_page(page);
down_read(&mm->mmap_sem);
lock_page(page);
}
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
}
/*
* Scan swap_map from current position to next entry still in use.
* Recycle to start on reaching the end, returning 0 when empty.
*/
static unsigned int find_next_to_unuse(struct swap_info_struct *si,
unsigned int prev)
unsigned int max = si->max;
unsigned int i = prev;
* No need for swap_lock here: we're just looking
* for whether an entry is in use, not modifying it; false
* hits are okay, and sys_swapoff() has already prevented new
* allocations from this area (while holding swap_lock).
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
*/
for (;;) {
if (++i >= max) {
if (!prev) {
i = 0;
break;
}
/*
* No entries in use at top of swap_map,
* loop back to start and recheck there.
*/
max = prev + 1;
prev = 0;
i = 1;
}
count = si->swap_map[i];
if (count && count != SWAP_MAP_BAD)
break;
}
return i;
}
/*
* We completely avoid races by reading each swap page in advance,
* and then search for the process using it. All the necessary
* page table adjustments can then be made atomically.
*/
static int try_to_unuse(unsigned int type)
{
struct swap_info_struct * si = &swap_info[type];
struct mm_struct *start_mm;
unsigned short *swap_map;
unsigned short swcount;
struct page *page;
swp_entry_t entry;
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
int retval = 0;
int reset_overflow = 0;
int shmem;
/*
* When searching mms for an entry, a good strategy is to
* start at the first mm we freed the previous entry from
* (though actually we don't notice whether we or coincidence
* freed the entry). Initialize this start_mm with a hold.
*
* A simpler strategy would be to start at the last mm we
* freed the previous entry from; but that would take less
* advantage of mmlist ordering, which clusters forked mms
* together, child after parent. If we race with dup_mmap(), we
* prefer to resolve parent before child, lest we miss entries
* duplicated after we scanned child: using last mm would invert
* that. Though it's only a serious concern when an overflowed
* swap count is reset from SWAP_MAP_MAX, preventing a rescan.
*/
start_mm = &init_mm;
atomic_inc(&init_mm.mm_users);
/*
* Keep on scanning until all entries have gone. Usually,
* one pass through swap_map is enough, but not necessarily:
* there are races when an instance of an entry might be missed.
*/
while ((i = find_next_to_unuse(si, i)) != 0) {
if (signal_pending(current)) {
retval = -EINTR;
break;
}
/*
* Get a page for the entry, using the existing swap
* cache page if there is one. Otherwise, get a clean
* page and read the swap into it.
*/
swap_map = &si->swap_map[i];
entry = swp_entry(type, i);
page = read_swap_cache_async(entry,
GFP_HIGHUSER_MOVABLE, NULL, 0);
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
if (!page) {
/*
* Either swap_duplicate() failed because entry
* has been freed independently, and will not be
* reused since sys_swapoff() already disabled
* allocation from here, or alloc_page() failed.
*/
if (!*swap_map)
continue;
retval = -ENOMEM;
break;
}
/*
* Don't hold on to start_mm if it looks like exiting.
*/
if (atomic_read(&start_mm->mm_users) == 1) {
mmput(start_mm);
start_mm = &init_mm;
atomic_inc(&init_mm.mm_users);
}
/*
* Wait for and lock page. When do_swap_page races with
* try_to_unuse, do_swap_page can handle the fault much
* faster than try_to_unuse can locate the entry. This
* apparently redundant "wait_on_page_locked" lets try_to_unuse
* defer to do_swap_page in such a case - in some tests,
* do_swap_page and try_to_unuse repeatedly compete.
*/
wait_on_page_locked(page);
wait_on_page_writeback(page);
lock_page(page);
wait_on_page_writeback(page);
/*
* Remove all references to entry.
* Whenever we reach init_mm, there's no address space
* to search, but use it as a reminder to search shmem.
*/
shmem = 0;
swcount = *swap_map;
if (swcount > 1) {
if (start_mm == &init_mm)
shmem = shmem_unuse(entry, page);
else
retval = unuse_mm(start_mm, entry, page);
}
if (*swap_map > 1) {
int set_start_mm = (*swap_map >= swcount);
struct list_head *p = &start_mm->mmlist;
struct mm_struct *new_start_mm = start_mm;
struct mm_struct *prev_mm = start_mm;
struct mm_struct *mm;
atomic_inc(&new_start_mm->mm_users);
atomic_inc(&prev_mm->mm_users);
spin_lock(&mmlist_lock);
while (*swap_map > 1 && !retval && !shmem &&
(p = p->next) != &start_mm->mmlist) {
mm = list_entry(p, struct mm_struct, mmlist);
if (!atomic_inc_not_zero(&mm->mm_users))
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
continue;
spin_unlock(&mmlist_lock);
mmput(prev_mm);
prev_mm = mm;
cond_resched();
swcount = *swap_map;
if (swcount <= 1)
;
else if (mm == &init_mm) {
set_start_mm = 1;
shmem = shmem_unuse(entry, page);
} else
retval = unuse_mm(mm, entry, page);
if (set_start_mm && *swap_map < swcount) {
mmput(new_start_mm);
atomic_inc(&mm->mm_users);
new_start_mm = mm;
set_start_mm = 0;
}
spin_lock(&mmlist_lock);
}
spin_unlock(&mmlist_lock);
mmput(prev_mm);
mmput(start_mm);
start_mm = new_start_mm;
}
if (shmem) {
/* page has already been unlocked and released */
if (shmem > 0)
continue;
retval = shmem;
break;
}
if (retval) {
unlock_page(page);
page_cache_release(page);
break;
}
/*
* How could swap count reach 0x7fff when the maximum
* pid is 0x7fff, and there's no way to repeat a swap
* page within an mm (except in shmem, where it's the
* shared object which takes the reference count)?
* We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
*
* If that's wrong, then we should worry more about
* exit_mmap() and do_munmap() cases described above:
* we might be resetting SWAP_MAP_MAX too early here.
* We know "Undead"s can happen, they're okay, so don't
* report them; but do report if we reset SWAP_MAP_MAX.
*/
if (*swap_map == SWAP_MAP_MAX) {
reset_overflow = 1;
}
/*
* If a reference remains (rare), we would like to leave
* the page in the swap cache; but try_to_unmap could
* then re-duplicate the entry once we drop page lock,
* so we might loop indefinitely; also, that page could
* not be swapped out to other storage meanwhile. So:
* delete from cache even if there's another reference,
* after ensuring that the data has been saved to disk -
* since if the reference remains (rarer), it will be
* read from disk into another page. Splitting into two
* pages would be incorrect if swap supported "shared
* private" pages, but they are handled by tmpfs files.
*/
if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
};
swap_writepage(page, &wbc);
lock_page(page);
wait_on_page_writeback(page);
}
if (PageSwapCache(page))
delete_from_swap_cache(page);
/*
* So we could skip searching mms once swap count went
* to 1, we did not mark any present ptes as dirty: must
* mark page dirty so shrink_page_list will preserve it.
*/
SetPageDirty(page);
unlock_page(page);
page_cache_release(page);
/*
* Make sure that we aren't completely killing
* interactive performance.
*/
cond_resched();
}
mmput(start_mm);
if (reset_overflow) {
printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
swap_overflow = 0;
}
return retval;
}
/*
* After a successful try_to_unuse, if no swap is now in use, we know
* we can empty the mmlist. swap_lock must be held on entry and exit.
* Note that mmlist_lock nests inside swap_lock, and an mm must be
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
* added to the mmlist just after page_duplicate - before would be racy.
*/
static void drain_mmlist(void)
{
struct list_head *p, *next;
unsigned int i;
for (i = 0; i < nr_swapfiles; i++)
if (swap_info[i].inuse_pages)
return;
spin_lock(&mmlist_lock);
list_for_each_safe(p, next, &init_mm.mmlist)
list_del_init(p);
spin_unlock(&mmlist_lock);
}
/*
* Use this swapdev's extent info to locate the (PAGE_SIZE) block which
* corresponds to page offset `offset'.
*/
sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
{
struct swap_extent *se = sis->curr_swap_extent;
struct swap_extent *start_se = se;
for ( ; ; ) {
struct list_head *lh;
if (se->start_page <= offset &&
offset < (se->start_page + se->nr_pages)) {
return se->start_block + (offset - se->start_page);
}
se = list_entry(lh, struct swap_extent, list);
sis->curr_swap_extent = se;
BUG_ON(se == start_se); /* It *must* be present */
}
}
#ifdef CONFIG_HIBERNATION
/*
* Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
* corresponding to given index in swap_info (swap type).
*/
sector_t swapdev_block(int swap_type, pgoff_t offset)
{
struct swap_info_struct *sis;
if (swap_type >= nr_swapfiles)
return 0;
sis = swap_info + swap_type;
return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
}
#endif /* CONFIG_HIBERNATION */
/*
* Free all of a swapdev's extent information
*/
static void destroy_swap_extents(struct swap_info_struct *sis)
{
while (!list_empty(&sis->extent_list)) {
struct swap_extent *se;
se = list_entry(sis->extent_list.next,
struct swap_extent, list);
list_del(&se->list);
kfree(se);
}
}
/*
* Add a block range (and the corresponding page range) into this swapdev's
* extent list. The extent list is kept sorted in page order.
* This function rather assumes that it is called in ascending page order.
*/
static int
add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
unsigned long nr_pages, sector_t start_block)
{