Newer
Older
/*
* linux/mm/nommu.c
*
* Replacement code for mm functions to support CPU's that don't
* have any form of memory management unit (thus no virtual memory).
*
* See Documentation/nommu-mmap.txt
*
* Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
* Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
* Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
* Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
* Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/file.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/mount.h>
#include <linux/personality.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include "internal.h"
#if 0
#define kenter(FMT, ...) \
printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
#define kleave(FMT, ...) \
printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
#define kdebug(FMT, ...) \
printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
#else
#define kenter(FMT, ...) \
no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
#define kleave(FMT, ...) \
no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
#define kdebug(FMT, ...) \
no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
#endif
void *high_memory;
struct page *mem_map;
unsigned long max_mapnr;
unsigned long num_physpages;
struct percpu_counter vm_committed_as;
int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
int sysctl_overcommit_ratio = 50; /* default is 50% */
int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
David Howells
committed
int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
atomic_long_t mmap_pages_allocated;
EXPORT_SYMBOL(num_physpages);
/* list of mapped, potentially shareable regions */
static struct kmem_cache *vm_region_jar;
struct rb_root nommu_region_tree = RB_ROOT;
DECLARE_RWSEM(nommu_region_sem);
const struct vm_operations_struct generic_file_vm_ops = {
};
/*
* Return the total memory allocated for this pointer, not
* just what the caller asked for.
*
* Doesn't have to be accurate, i.e. may have races.
*/
unsigned int kobjsize(const void *objp)
{
struct page *page;
/*
* If the object we have should not have ksize performed on it,
* return size of 0
*/
if (!objp || !virt_addr_valid(objp))
return 0;
page = virt_to_head_page(objp);
/*
* If the allocator sets PageSlab, we know the pointer came from
* kmalloc().
*/
/*
* If it's not a compound page, see if we have a matching VMA
* region. This test is intentionally done in reverse order,
* so if there's no VMA, we still fall through and hand back
* PAGE_SIZE for 0-order pages.
*/
if (!PageCompound(page)) {
struct vm_area_struct *vma;
vma = find_vma(current->mm, (unsigned long)objp);
if (vma)
return vma->vm_end - vma->vm_start;
}
/*
* The ksize() function is only guaranteed to work for pointers
* returned by kmalloc(). So handle arbitrary pointers here.
return PAGE_SIZE << compound_order(page);
int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int nr_pages, unsigned int foll_flags,
struct page **pages, struct vm_area_struct **vmas,
int *retry)
Sonic Zhang
committed
struct vm_area_struct *vma;
unsigned long vm_flags;
int i;
/* calculate required read or write permissions.
* If FOLL_FORCE is set, we only require the "MAY" flags.
vm_flags = (foll_flags & FOLL_WRITE) ?
(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
vm_flags &= (foll_flags & FOLL_FORCE) ?
(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
David Howells
committed
vma = find_vma(mm, start);
if (!vma)
goto finish_or_fault;
/* protect what we can, including chardevs */
if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
!(vm_flags & vma->vm_flags))
Sonic Zhang
committed
if (pages) {
pages[i] = virt_to_page(start);
if (pages[i])
page_cache_get(pages[i]);
}
if (vmas)
Sonic Zhang
committed
vmas[i] = vma;
start = (start + PAGE_SIZE) & PAGE_MASK;
return i;
finish_or_fault:
return i ? : -EFAULT;
/*
* get a list of pages in an address range belonging to the specified process
* and indicate the VMA that covers each page
* - this is potentially dodgy as we may end incrementing the page count of a
* slab page or a secondary page from a compound page
* - don't permit access to VMAs that don't support it, such as I/O mappings
*/
int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, int nr_pages, int write, int force,
struct page **pages, struct vm_area_struct **vmas)
{
int flags = 0;
if (write)
return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
NULL);
Greg Ungerer
committed
EXPORT_SYMBOL(get_user_pages);
/**
* follow_pfn - look up PFN at a user virtual address
* @vma: memory mapping
* @address: user virtual address
* @pfn: location to store found PFN
*
* Only IO mappings and raw PFN mappings are allowed.
*
* Returns zero and the pfn at @pfn on success, -ve otherwise.
*/
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
unsigned long *pfn)
{
if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
return -EINVAL;
*pfn = address >> PAGE_SHIFT;
return 0;
}
EXPORT_SYMBOL(follow_pfn);
DEFINE_RWLOCK(vmlist_lock);
struct vm_struct *vmlist;
EXPORT_SYMBOL(vfree);
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
* You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
* returns only a logical address.
return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
EXPORT_SYMBOL(__vmalloc);
void *vmalloc_user(unsigned long size)
{
void *ret;
ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
PAGE_KERNEL);
if (ret) {
struct vm_area_struct *vma;
down_write(¤t->mm->mmap_sem);
vma = find_vma(current->mm, (unsigned long)ret);
if (vma)
vma->vm_flags |= VM_USERMAP;
up_write(¤t->mm->mmap_sem);
}
return ret;
}
EXPORT_SYMBOL(vmalloc_user);
struct page *vmalloc_to_page(const void *addr)
EXPORT_SYMBOL(vmalloc_to_page);
unsigned long vmalloc_to_pfn(const void *addr)
EXPORT_SYMBOL(vmalloc_to_pfn);
long vread(char *buf, char *addr, unsigned long count)
{
memcpy(buf, addr, count);
return count;
}
long vwrite(char *buf, char *addr, unsigned long count)
{
/* Don't allow overflow */
if ((unsigned long) addr + count < count)
count = -(unsigned long) addr;
memcpy(addr, buf, count);
return(count);
}
/*
* vmalloc - allocate virtually continguos memory
*
* @size: allocation size
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into continguos kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vmalloc(unsigned long size)
{
return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
}
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*
* vzalloc - allocate virtually continguos memory with zero fill
*
* @size: allocation size
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into continguos kernel virtual space.
* The memory allocated is set to zero.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vzalloc(unsigned long size)
{
return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
PAGE_KERNEL);
}
EXPORT_SYMBOL(vzalloc);
/**
* vmalloc_node - allocate memory on a specific node
* @size: allocation size
* @node: numa node
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vmalloc_node(unsigned long size, int node)
{
return vmalloc(size);
}
EXPORT_SYMBOL(vmalloc_node);
/**
* vzalloc_node - allocate memory on a specific node with zero fill
* @size: allocation size
* @node: numa node
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
* The memory allocated is set to zero.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vzalloc_node(unsigned long size, int node)
{
return vzalloc(size);
}
EXPORT_SYMBOL(vzalloc_node);
#ifndef PAGE_KERNEL_EXEC
# define PAGE_KERNEL_EXEC PAGE_KERNEL
#endif
/**
* vmalloc_exec - allocate virtually contiguous, executable memory
* @size: allocation size
*
* Kernel-internal function to allocate enough pages to cover @size
* the page level allocator and map them into contiguous and
* executable kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vmalloc_exec(unsigned long size)
{
return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
}
/**
* vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
* @size: allocation size
*
* Allocate enough 32bit PA addressable pages to cover @size from the
* page level allocator and map them into continguos kernel virtual space.
*/
void *vmalloc_32(unsigned long size)
{
return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
}
EXPORT_SYMBOL(vmalloc_32);
/**
* vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
* @size: allocation size
*
* The resulting memory area is 32bit addressable and zeroed so it can be
* mapped to userspace without leaking data.
*
* VM_USERMAP is set on the corresponding VMA so that subsequent calls to
* remap_vmalloc_range() are permissible.
*/
void *vmalloc_32_user(unsigned long size)
{
/*
* We'll have to sort out the ZONE_DMA bits for 64-bit,
* but for now this can simply use vmalloc_user() directly.
*/
return vmalloc_user(size);
}
EXPORT_SYMBOL(vmalloc_32_user);
void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
{
BUG();
return NULL;
}
EXPORT_SYMBOL(vmap);
void vunmap(const void *addr)
EXPORT_SYMBOL(vunmap);
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
{
BUG();
return NULL;
}
EXPORT_SYMBOL(vm_map_ram);
void vm_unmap_ram(const void *mem, unsigned int count)
{
BUG();
}
EXPORT_SYMBOL(vm_unmap_ram);
void vm_unmap_aliases(void)
{
}
EXPORT_SYMBOL_GPL(vm_unmap_aliases);
/*
* Implement a stub for vmalloc_sync_all() if the architecture chose not to
* have one.
*/
void __attribute__((weak)) vmalloc_sync_all(void)
{
}
/**
* alloc_vm_area - allocate a range of kernel address space
* @size: size of the area
*
* Returns: NULL on failure, vm_struct on success
*
* This function reserves a range of kernel address space, and
* allocates pagetables to map that range. No actual mappings
* are created. If the kernel address space is not shared
* between processes, it syncs the pagetable across all
* processes.
*/
struct vm_struct *alloc_vm_area(size_t size)
{
BUG();
return NULL;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);
void free_vm_area(struct vm_struct *area)
{
BUG();
}
EXPORT_SYMBOL_GPL(free_vm_area);
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
struct page *page)
{
return -EINVAL;
}
EXPORT_SYMBOL(vm_insert_page);
/*
* sys_brk() for the most part doesn't need the global kernel
* lock, except when an application is doing something nasty
* like trying to un-brk an area that has already been mapped
* to a regular file. in this case, the unmapping will need
* to invoke file system routines that need the global lock.
*/
SYSCALL_DEFINE1(brk, unsigned long, brk)
{
struct mm_struct *mm = current->mm;
if (brk < mm->start_brk || brk > mm->context.end_brk)
return mm->brk;
if (mm->brk == brk)
return mm->brk;
/*
* Always allow shrinking brk
*/
if (brk <= mm->brk) {
mm->brk = brk;
return brk;
}
/*
* Ok, looks good - let it rip.
*/
flush_icache_range(mm->brk, brk);
/*
* initialise the VMA and region record slabs
*/
void __init mmap_init(void)
int ret;
ret = percpu_counter_init(&vm_committed_as, 0);
VM_BUG_ON(ret);
vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
* validate the region tree
* - the caller must hold the region lock
#ifdef CONFIG_DEBUG_NOMMU_REGIONS
static noinline void validate_nommu_regions(void)
struct vm_region *region, *last;
struct rb_node *p, *lastp;
lastp = rb_first(&nommu_region_tree);
if (!lastp)
return;
last = rb_entry(lastp, struct vm_region, vm_rb);
BUG_ON(unlikely(last->vm_end <= last->vm_start));
BUG_ON(unlikely(last->vm_top < last->vm_end));
while ((p = rb_next(lastp))) {
region = rb_entry(p, struct vm_region, vm_rb);
last = rb_entry(lastp, struct vm_region, vm_rb);
BUG_ON(unlikely(region->vm_end <= region->vm_start));
BUG_ON(unlikely(region->vm_top < region->vm_end));
BUG_ON(unlikely(region->vm_start < last->vm_top));
static void validate_nommu_regions(void)
{
}
* add a region into the global tree
static void add_nommu_region(struct vm_region *region)
struct vm_region *pregion;
struct rb_node **p, *parent;
validate_nommu_regions();
parent = NULL;
p = &nommu_region_tree.rb_node;
while (*p) {
parent = *p;
pregion = rb_entry(parent, struct vm_region, vm_rb);
if (region->vm_start < pregion->vm_start)
p = &(*p)->rb_left;
else if (region->vm_start > pregion->vm_start)
p = &(*p)->rb_right;
else if (pregion == region)
return;
else
BUG();
rb_link_node(®ion->vm_rb, parent, p);
rb_insert_color(®ion->vm_rb, &nommu_region_tree);
* delete a region from the global tree
static void delete_nommu_region(struct vm_region *region)
BUG_ON(!nommu_region_tree.rb_node);
validate_nommu_regions();
rb_erase(®ion->vm_rb, &nommu_region_tree);
validate_nommu_regions();
* free a contiguous series of pages
static void free_page_series(unsigned long from, unsigned long to)
for (; from < to; from += PAGE_SIZE) {
struct page *page = virt_to_page(from);
kdebug("- free %lx", from);
atomic_long_dec(&mmap_pages_allocated);
if (page_count(page) != 1)
kdebug("free page %p: refcount not one: %d",
page, page_count(page));
}
}
* release a reference to a region
* - the caller must hold the region semaphore for writing, which this releases
* - the region may not have been added to the tree yet, in which case vm_top
static void __put_nommu_region(struct vm_region *region)
__releases(nommu_region_sem)
kenter("%p{%d}", region, region->vm_usage);
BUG_ON(!nommu_region_tree.rb_node);
if (--region->vm_usage == 0) {
if (region->vm_top > region->vm_start)
delete_nommu_region(region);
up_write(&nommu_region_sem);
if (region->vm_file)
fput(region->vm_file);
/* IO memory and memory shared directly out of the pagecache
* from ramfs/tmpfs mustn't be released here */
if (region->vm_flags & VM_MAPPED_COPY) {
kdebug("free series");
free_page_series(region->vm_start, region->vm_top);
}
kmem_cache_free(vm_region_jar, region);
} else {
up_write(&nommu_region_sem);
/*
* release a reference to a region
*/
static void put_nommu_region(struct vm_region *region)
{
down_write(&nommu_region_sem);
__put_nommu_region(region);
/*
* update protection on a vma
*/
static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
{
#ifdef CONFIG_MPU
struct mm_struct *mm = vma->vm_mm;
long start = vma->vm_start & PAGE_MASK;
while (start < vma->vm_end) {
protect_page(mm, start, flags);
start += PAGE_SIZE;
}
update_protections(mm);
#endif
}
* add a VMA into a process's mm_struct in the appropriate place in the list
* and tree and add to the address space's page tree also if not an anonymous
* page
* - should be called with mm->mmap_sem held writelocked
static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
struct vm_area_struct *pvma, *prev;
struct rb_node **p, *parent, *rb_prev;
kenter(",%p", vma);
BUG_ON(!vma->vm_region);
mm->map_count++;
vma->vm_mm = mm;
protect_vma(vma, vma->vm_flags);
/* add the VMA to the mapping */
if (vma->vm_file) {
mapping = vma->vm_file->f_mapping;
flush_dcache_mmap_lock(mapping);
vma_prio_tree_insert(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
/* add the VMA to the tree */
while (*p) {
parent = *p;
pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
/* sort by: start addr, end addr, VMA struct addr in that order
* (the latter is necessary as we may get identical VMAs) */
if (vma->vm_start < pvma->vm_start)
else if (vma->vm_start > pvma->vm_start) {
rb_prev = parent;
} else if (vma->vm_end < pvma->vm_end)
else if (vma->vm_end > pvma->vm_end) {
rb_prev = parent;
else if (vma > pvma) {
rb_prev = parent;
rb_insert_color(&vma->vm_rb, &mm->mm_rb);
/* add VMA to the VMA list also */
prev = NULL;
if (rb_prev)
prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
__vma_link_list(mm, vma, prev, parent);
* delete a VMA from its owning mm_struct and address space
static void delete_vma_from_mm(struct vm_area_struct *vma)
struct mm_struct *mm = vma->vm_mm;
kenter("%p", vma);
protect_vma(vma, 0);
mm->map_count--;
if (mm->mmap_cache == vma)
mm->mmap_cache = NULL;
/* remove the VMA from the mapping */
if (vma->vm_file) {
mapping = vma->vm_file->f_mapping;
flush_dcache_mmap_lock(mapping);
vma_prio_tree_remove(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
/* remove from the MM's tree and list */
rb_erase(&vma->vm_rb, &mm->mm_rb);
if (vma->vm_prev)
vma->vm_prev->vm_next = vma->vm_next;
else
mm->mmap = vma->vm_next;
if (vma->vm_next)
vma->vm_next->vm_prev = vma->vm_prev;
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
vma->vm_mm = NULL;
}
/*
* destroy a VMA record
*/
static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
{
kenter("%p", vma);
if (vma->vm_ops && vma->vm_ops->close)
vma->vm_ops->close(vma);
if (vma->vm_file) {
fput(vma->vm_file);
if (vma->vm_flags & VM_EXECUTABLE)
removed_exe_file_vma(mm);
}
put_nommu_region(vma->vm_region);
kmem_cache_free(vm_area_cachep, vma);
}
/*
* look up the first VMA in which addr resides, NULL if none
* - should be called with mm->mmap_sem at least held readlocked
*/
struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma;
/* check the cache first */
vma = mm->mmap_cache;
if (vma && vma->vm_start <= addr && vma->vm_end > addr)
return vma;
/* trawl the list (there may be multiple mappings in which addr
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (vma->vm_start > addr)
return NULL;
if (vma->vm_end > addr) {
mm->mmap_cache = vma;
return vma;
}
}
return NULL;
}
EXPORT_SYMBOL(find_vma);
/*
* find a VMA
* - we don't extend stack VMAs under NOMMU conditions
*/
struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
{
David Howells
committed
return find_vma(mm, addr);
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
}
/*
* expand a stack to a given address
* - not supported under NOMMU conditions
*/
int expand_stack(struct vm_area_struct *vma, unsigned long address)
{
return -ENOMEM;
}
/*
* look up the first VMA exactly that exactly matches addr
* - should be called with mm->mmap_sem at least held readlocked
*/
static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
unsigned long addr,
unsigned long len)
{
struct vm_area_struct *vma;
unsigned long end = addr + len;
/* check the cache first */
vma = mm->mmap_cache;
if (vma && vma->vm_start == addr && vma->vm_end == end)
return vma;
/* trawl the list (there may be multiple mappings in which addr
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (vma->vm_start < addr)
continue;
if (vma->vm_start > addr)
return NULL;
if (vma->vm_end == end) {
mm->mmap_cache = vma;
return vma;
}
}
return NULL;
}
/*
* determine whether a mapping should be permitted and, if so, what sort of
* mapping we're capable of supporting
*/
static int validate_mmap_request(struct file *file,
unsigned long addr,
unsigned long len,
unsigned long prot,
unsigned long flags,
unsigned long pgoff,
unsigned long *_capabilities)
{
unsigned long capabilities, rlen;
unsigned long reqprot = prot;
int ret;
/* do the simple checks first */
if (flags & MAP_FIXED) {
printk(KERN_DEBUG
"%d: Can't do fixed-address/overlay mmap of RAM\n",
current->pid);
return -EINVAL;
}
if ((flags & MAP_TYPE) != MAP_PRIVATE &&
(flags & MAP_TYPE) != MAP_SHARED)
return -EINVAL;
/* Careful about overflows.. */
rlen = PAGE_ALIGN(len);
if (!rlen || rlen > TASK_SIZE)
return -ENOMEM;
if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
return -EOVERFLOW;
if (file) {
/* validate file mapping requests */
struct address_space *mapping;
/* files must support mmap */
if (!file->f_op || !file->f_op->mmap)
return -ENODEV;
/* work out if what we've got could possibly be shared
* - we support chardevs that provide their own "memory"
* - we support files/blockdevs that are memory backed
*/
mapping = file->f_mapping;
if (!mapping)
mapping = file->f_path.dentry->d_inode->i_mapping;
capabilities = 0;
if (mapping && mapping->backing_dev_info)
capabilities = mapping->backing_dev_info->capabilities;
if (!capabilities) {
/* no explicit capabilities set, so assume some
* defaults */
switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
case S_IFREG:
case S_IFBLK:
capabilities = BDI_CAP_MAP_COPY;
break;
case S_IFCHR:
capabilities =
BDI_CAP_MAP_DIRECT |
BDI_CAP_READ_MAP |
BDI_CAP_WRITE_MAP;
break;
default:
return -EINVAL;
}
}
/* eliminate any capabilities that we can't support on this
* device */
if (!file->f_op->get_unmapped_area)
capabilities &= ~BDI_CAP_MAP_DIRECT;
if (!file->f_op->read)
capabilities &= ~BDI_CAP_MAP_COPY;
/* The file shall have been opened with read permission. */
if (!(file->f_mode & FMODE_READ))
return -EACCES;
if (flags & MAP_SHARED) {
/* do checks for writing, appending and locking */
if ((prot & PROT_WRITE) &&
!(file->f_mode & FMODE_WRITE))
return -EACCES;
if (IS_APPEND(file->f_path.dentry->d_inode) &&
if (locks_verify_locked(file->f_path.dentry->d_inode))
return -EAGAIN;
if (!(capabilities & BDI_CAP_MAP_DIRECT))
return -ENODEV;
/* we mustn't privatise shared mappings */
capabilities &= ~BDI_CAP_MAP_COPY;
}
else {
/* we're going to read the file into private memory we
* allocate */
if (!(capabilities & BDI_CAP_MAP_COPY))
return -ENODEV;
/* we don't permit a private writable mapping to be
* shared with the backing device */
if (prot & PROT_WRITE)
capabilities &= ~BDI_CAP_MAP_DIRECT;
}
if (capabilities & BDI_CAP_MAP_DIRECT) {